Energy-Efficient Information Placement and Delivery Using UAVs

被引:7
作者
Al-Habob, Ahmed A. [1 ]
Dobre, Octavia A. [2 ]
Muhaidat, Sami [3 ]
Poor, H. Vincent [4 ]
机构
[1] York Univ, Lassonde Sch Engn, Toronto, ON M3J 1P3, Canada
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
[3] Khalifa Univ, Dept Elect & Comp Engn, Ctr Cyber Phys Syst, Abu Dhabi, U Arab Emirates
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Trajectory; Autonomous aerial vehicles; Servers; Internet of Things; Genetic algorithms; Energy consumption; Performance evaluation; Ant colony optimization (ACO); information placement and delivery; multichromosome genetic algorithm (GA); unmanned aerial vehicles (UAVs); DATA DISSEMINATION; TRAJECTORY DESIGN; OPTIMIZATION; MAXIMIZATION; MINIMIZATION; NETWORKS; INTERNET;
D O I
10.1109/JIOT.2022.3200916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on minimizing the energy consumption of a fleet of unmanned aerial vehicles (UAVs) disseminating information to a set of Internet of Things devices. In the considered scenario, each device wants to download a subset of files from a library of files. Considering the storage capacity of the UAVs, a framework is provided that minimizes energy consumption by optimally selecting the contributing UAVs, placing files, and planning the trajectory of each contributing UAV. In this framework, a combinatorial optimization problem is formulated, which is hard to solve directly for a practical number of devices, files, and/or UAVs. In order to tackle this challenge, we develop three solution approaches, namely, a multichromosome genetic algorithm (GA), a hybrid genetic-ant colony algorithm, and a GA with heuristic file placement. Results show that the proposed solution approaches minimize the total energy consumption and provide near-optimal solutions. Results also illustrate that the proposed framework optimizes the number of UAVs participating in the information delivery mission.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 29 条
[1]   Age- and Correlation-Aware Information Gathering [J].
Al-Habob, Ahmed A. ;
Dobre, Octavia A. ;
Poor, H. Vincent .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (02) :273-277
[2]   Energy-Efficient Data Dissemination Using a UAV: An Ant Colony Approach [J].
Al-Habob, Ahmed A. ;
Dobre, Octavia A. ;
Muhaidat, Sami ;
Vincent Poor, H. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (01) :16-20
[3]   Optimal LAP Altitude for Maximum Coverage [J].
Al-Hourani, Akram ;
Kandeepan, Sithamparanathan ;
Lardner, Simon .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2014, 3 (06) :569-572
[4]   3-D Placement of an Unmanned Aerial Vehicle Base Station (UAV-BS) for Energy-Efficient Maximal Coverage [J].
Alzenad, Mohamed ;
El-Keyi, Amr ;
Lagum, Faraj ;
Yanikomeroglu, Halim .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2017, 6 (04) :434-437
[5]   Joint Position and Travel Path Optimization for Energy Efficient Wireless Data Gathering Using Unmanned Aerial Vehicles [J].
Ben Ghorbel, Mahdi ;
Rodriguez-Duarte, David ;
Ghazzai, Hakim ;
Hossain, Md. Jahangir ;
Menouar, Hamid .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (03) :2165-2175
[6]   Caching in the Sky: Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience [J].
Chen, Mingzhe ;
Mozaffari, Mohammad ;
Saad, Walid ;
Yin, Changchuan ;
Debbah, Merouane ;
Hong, Choong Seon .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (05) :1046-1061
[7]   Distributed Processing Applications for UAV/drones: A Survey [J].
Chmaj, Grzegorz ;
Selvaraj, Henry .
PROGRESS IN SYSTEMS ENGINEERING, 2015, 366 :449-454
[8]  
Dobre O. A., 2020, P 31 ANN IEEE INT S, P1
[9]   Pareto ant colony optimization: A metaheuristic approach to multiobjective portfolio selection [J].
Doerner, K ;
Gutjahr, WJ ;
Hartl, RF ;
Strauss, C ;
Stummer, C .
ANNALS OF OPERATIONS RESEARCH, 2004, 131 (1-4) :79-99
[10]   A Survey of Mobile Information-Centric Networking: Research Issues and Challenges [J].
Fang, Chao ;
Yao, Haipeng ;
Wang, Zhuwei ;
Wu, Wenjun ;
Jin, Xiaoning ;
Yu, F. Richard .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :2353-2371