Energy-Efficient Information Placement and Delivery Using UAVs

被引:3
|
作者
Al-Habob, Ahmed A. [1 ]
Dobre, Octavia A. [2 ]
Muhaidat, Sami [3 ]
Poor, H. Vincent [4 ]
机构
[1] York Univ, Lassonde Sch Engn, Toronto, ON M3J 1P3, Canada
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
[3] Khalifa Univ, Dept Elect & Comp Engn, Ctr Cyber Phys Syst, Abu Dhabi, U Arab Emirates
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Trajectory; Autonomous aerial vehicles; Servers; Internet of Things; Genetic algorithms; Energy consumption; Performance evaluation; Ant colony optimization (ACO); information placement and delivery; multichromosome genetic algorithm (GA); unmanned aerial vehicles (UAVs); DATA DISSEMINATION; TRAJECTORY DESIGN; OPTIMIZATION; MAXIMIZATION; MINIMIZATION; NETWORKS; INTERNET;
D O I
10.1109/JIOT.2022.3200916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on minimizing the energy consumption of a fleet of unmanned aerial vehicles (UAVs) disseminating information to a set of Internet of Things devices. In the considered scenario, each device wants to download a subset of files from a library of files. Considering the storage capacity of the UAVs, a framework is provided that minimizes energy consumption by optimally selecting the contributing UAVs, placing files, and planning the trajectory of each contributing UAV. In this framework, a combinatorial optimization problem is formulated, which is hard to solve directly for a practical number of devices, files, and/or UAVs. In order to tackle this challenge, we develop three solution approaches, namely, a multichromosome genetic algorithm (GA), a hybrid genetic-ant colony algorithm, and a GA with heuristic file placement. Results show that the proposed solution approaches minimize the total energy consumption and provide near-optimal solutions. Results also illustrate that the proposed framework optimizes the number of UAVs participating in the information delivery mission.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [1] Reinforcement Learning for Energy-Efficient Trajectory Design of UAVs
    Arani, Atefeh Hajijamali
    Azari, M. Mahdi
    Hu, Peng
    Zhu, Yeying
    Yanikomeroglu, Halim
    Safavi-Naeini, Safieddin
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11): : 9060 - 9070
  • [2] Energy-Efficient 3-D UAV Ground Node Accessing Using the Minimum Number of UAVs
    Gong, Hao
    Huang, Baoqi
    Jia, Bing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 12046 - 12060
  • [3] Energy-Efficient Multi-UAVs Deployment and Movement for Emergency Response
    Li, Linpei
    Wen, Xiangming
    Lu, Zhaoming
    Jing, Wenpeng
    Zhang, Haijun
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) : 1625 - 1629
  • [4] Online Offloading for Energy-Efficient and Delay-Aware MEC Systems With Cellular-Connected UAVs
    Liu, Binghong
    Peng, Mugen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22321 - 22336
  • [5] Multi-Objective Deployment Optimization of UAVs for Energy-Efficient Wireless Coverage
    Zhu, Xiumin
    Zhai, Linbo
    Li, Nianxin
    Li, Yumei
    Yang, Feng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (06) : 3587 - 3601
  • [6] Joint Task Offloading and Cache Placement for Energy-Efficient Mobile Edge Computing Systems
    Liang, Jingxuan
    Xing, Hong
    Wang, Feng
    Lau, Vincent K. N.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (04) : 694 - 698
  • [7] Energy-Efficient Velocity Control for Massive Numbers of UAVs: A Mean Field Game Approach
    Gao, Hao
    Lee, Wonjun
    Kang, Yuhan
    Li, Wuchen
    Han, Zhu
    Osher, Stanley
    Poor, H. Vincent
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (06) : 6266 - 6278
  • [8] Energy-Efficient Cache Update and Content Delivery for Optimizing Information Freshness of Industrial Applications
    Zhao, Junwei
    Wang, Ying
    Qin, Xiaoqi
    Yan, Yingjie
    Fei, Zixuan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 4508 - 4522
  • [9] Entropy-aware energy-efficient virtual machine placement in cloud environments using type information
    Mousavi, Tayebeh Sadat
    Shankar, Achyut
    Rezvani, Mohammad Hossein
    Ghadiri, Hamid
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 36 (15)
  • [10] Energy-Efficient Resource Allocation and Trajectory Design for UAV Relaying Systems
    Zhang, Tong
    Liu, Gongliang
    Zhang, Haijun
    Kang, Wenjing
    Karagiannidis, George K.
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (10) : 6483 - 6498