A Twin S-Scheme Artificial Photosynthetic System with Self-Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate

被引:276
作者
Ruan, Xiaowen [1 ]
Huang, Chengxiang [1 ,2 ]
Cheng, Hui [1 ]
Zhang, Zhiquan [3 ]
Cui, Yi [4 ]
Li, Zhiyun [4 ]
Xie, Tengfeng [5 ]
Ba, Kaikai [5 ]
Zhang, Haiyan
Zhang, Lei [5 ]
Zhao, Xiao [1 ]
Leng, Jing [2 ]
Jin, Shengye [2 ]
Zhang, Wei [1 ]
Zheng, Weitao [1 ]
Ravi, Sai Kishore [6 ]
Jiang, Zhifeng [3 ]
Cui, Xiaoqiang [1 ]
Yu, Jiaguo
机构
[1] Jilin Univ, Electron Microscopy Ctr, Sch Mat Sci & Engn, State Key Lab Automot Simulat &Control,Key Lab Aut, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[3] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob, Vacuum Interconnected Nanotech Workstat, Suzhou 215123, Peoples R China
[5] Jilin Univ, Coll Chem, 2699 Qianjin St, Changchun 130012, Peoples R China
[6] City Univ Hong Kong, Sch Energy & Environm, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial photosynthetic system; band alignment; charge transfer; hydrogen evolution; photocatalyst; twin S-scheme; TIO2; WATER; CONSTRUCTION; EFFICIENCY; REDUCTION; TITANIA;
D O I
10.1002/adma.202209141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g(-1) h(-1) and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.
引用
收藏
页数:9
相关论文
共 65 条
[21]   Emerging Role of the Band-Structure Approach in Biohybrid Photovoltaics: A Path Beyond Bioelectrochemistry [J].
Ravi, Sai Kishore ;
Udayagiri, Vishnu Saran ;
Suresh, Lakshmi ;
Tan, Swee Ching .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (24)
[22]   Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion [J].
Raza, Adil ;
Shen, Honglie ;
Haidry, Azhar Ali .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277
[23]   Electron cloud density localized graphitic carbon nitride with enhanced optical absorption and carrier separation towards photocatalytic hydrogen evolution [J].
Ruan, Xiaowen ;
Wang, Zhongxu ;
Wei, Zhong ;
Zhang, Haiyan ;
Zhang, Lei ;
Zhao, Xiao ;
Singh, David J. ;
Zhao, Jingxiang ;
Cui, Xiaoqiang ;
Zheng, Weitao .
APPLIED SURFACE SCIENCE, 2022, 601
[24]   Favorable Energy Band Alignment of TiO2 Anatase/Rutile Heterophase Homojunctions Yields Photocatalytic Hydrogen Evolution with Quantum Efficiency Exceeding 45.6% [J].
Ruan, Xiaowen ;
Cui, Xiaoqiang ;
Cui, Yi ;
Fan, Xiaofeng ;
Li, Zhiyun ;
Xie, Tengfeng ;
Ba, Kaikai ;
Jia, Guangri ;
Zhang, Haiyan ;
Zhang, Lei ;
Zhang, Wei ;
Zhao, Xiao ;
Leng, Jing ;
Jin, Shengye ;
Singh, David J. ;
Zheng, Weitao .
ADVANCED ENERGY MATERIALS, 2022, 12 (16)
[25]   Intramolecular heterostructured carbon nitride with heptazine-triazine for enhanced photocatalytic hydrogen evolution [J].
Ruan, Xiaowen ;
Cui, Xiaoqiang ;
Jia, Guangri ;
Wu, Jiandong ;
Zhao, Jingxiang ;
Singh, David J. ;
Liu, Yanhua ;
Zhang, Haiyan ;
Zhang, Lei ;
Zheng, Weitao .
CHEMICAL ENGINEERING JOURNAL, 2022, 428
[26]   Dual-Functional Photocatalysis for Cooperative Hydrogen Evolution and Benzylamine Oxidation Coupling over Sandwiched-Like Pd@TiO2@ZnIn2S4 Nanobox [J].
She, Ping ;
Qin, Jun-sheng ;
Sheng, Jiyao ;
Qi, Yuanyuan ;
Rui, Hongbang ;
Zhang, Wei ;
Ge, Xin ;
Lu, Geyu ;
Song, Xiaowei ;
Rao, Heng .
SMALL, 2022, 18 (10)
[27]   A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency [J].
Shehzad, Nasir ;
Tahir, Muhammad ;
Johari, Khairiraihanna ;
Murugesan, Thanabalan ;
Hussain, Murid .
JOURNAL OF CO2 UTILIZATION, 2018, 26 :98-122
[28]   Phase-junction design of MOF-derived TiO2 photoanodes sensitized with quantum dots for efficient hydrogen generation [J].
Shi, Li ;
Benetti, Daniele ;
Li, Faying ;
Wei, Qin ;
Rosei, Federico .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
[29]   In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity [J].
Shi, Xiaowei ;
Kim, Sooyeon ;
Fujitsuka, Mamoru ;
Majima, Tetsuro .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 254 :594-600
[30]   Photocatalytic water splitting with a quantum efficiency of almost unity [J].
Takata, Tsuyoshi ;
Jiang, Junzhe ;
Sakata, Yoshihisa ;
Nakabayashi, Mamiko ;
Shibata, Naoya ;
Nandal, Vikas ;
Seki, Kazuhiko ;
Hisatomi, Takashi ;
Domen, Kazunari .
NATURE, 2020, 581 (7809) :411-+