A Twin S-Scheme Artificial Photosynthetic System with Self-Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate

被引:276
作者
Ruan, Xiaowen [1 ]
Huang, Chengxiang [1 ,2 ]
Cheng, Hui [1 ]
Zhang, Zhiquan [3 ]
Cui, Yi [4 ]
Li, Zhiyun [4 ]
Xie, Tengfeng [5 ]
Ba, Kaikai [5 ]
Zhang, Haiyan
Zhang, Lei [5 ]
Zhao, Xiao [1 ]
Leng, Jing [2 ]
Jin, Shengye [2 ]
Zhang, Wei [1 ]
Zheng, Weitao [1 ]
Ravi, Sai Kishore [6 ]
Jiang, Zhifeng [3 ]
Cui, Xiaoqiang [1 ]
Yu, Jiaguo
机构
[1] Jilin Univ, Electron Microscopy Ctr, Sch Mat Sci & Engn, State Key Lab Automot Simulat &Control,Key Lab Aut, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Peoples R China
[3] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob, Vacuum Interconnected Nanotech Workstat, Suzhou 215123, Peoples R China
[5] Jilin Univ, Coll Chem, 2699 Qianjin St, Changchun 130012, Peoples R China
[6] City Univ Hong Kong, Sch Energy & Environm, Tat Chee Ave, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
artificial photosynthetic system; band alignment; charge transfer; hydrogen evolution; photocatalyst; twin S-scheme; TIO2; WATER; CONSTRUCTION; EFFICIENCY; REDUCTION; TITANIA;
D O I
10.1002/adma.202209141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g(-1) h(-1) and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Visualization of the distribution of anatase and rutile TiO2 crystals in Au/TiO2 powder catalysts by STEM-EELS spectrum imaging [J].
Akita, Tomoki ;
Kohyama, Masanori .
SURFACE AND INTERFACE ANALYSIS, 2014, 46 (12-13) :1249-1252
[2]   Ultra-fast construction of plaque-like Li2TiO3/TiO2 heterostructure for efficient gas-solid phase CO2 photoreduction [J].
Bi, Wei ;
Hu, Yanjie ;
Jiang, Nan ;
Zhang, Ling ;
Jiang, Hao ;
Zhao, Xing ;
Wang, Chengyun ;
Li, Chunzhong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 269
[3]   Boosting the Photocatalytic H2 Evolution and Benzylamine Oxidation using 2D/1D g-C3N4/TiO2 Nanoheterojunction [J].
Chandra, Moumita ;
Guharoy, Utsab ;
Pradhan, Debabrata .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (19) :22122-22137
[4]   Oxygen Vacancy-Induced Construction of CoO/h-TiO2 Z-Scheme Heterostructures for Enhanced Photocatalytic Hydrogen Evolution [J].
Chen, Xiaoyu ;
Sun, Bojing ;
Chu, Jiayu ;
Han, Zhi ;
Wang, Yu ;
Du, Yunchen ;
Han, Xijiang ;
Xu, Ping .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) :28945-28955
[5]   Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution [J].
Chen, Yao ;
Yang, Dong ;
Xin, Xin ;
Yang, Zhongshan ;
Gao, Yuchen ;
Shi, Yonghui ;
Zhao, Zhanfeng ;
An, Ke ;
Wang, Wenjing ;
Tan, Jiangdan ;
Jiang, Zhongyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (17) :9717-9725
[6]   A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron-Hole Separation for High-Performance Hydrogen Evolution [J].
Gao, Chaomin ;
Wei, Tao ;
Zhang, Yanyan ;
Song, Xiaohan ;
Huan, Yu ;
Liu, Hong ;
Zhao, Mingwen ;
Yu, Jinghua ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2019, 31 (08)
[7]   Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: One-step photoinduced deposition and its improved H2-evolution activity [J].
Gao, Duoduo ;
Liu, Wenjing ;
Xu, Ying ;
Wang, Ping ;
Fan, Jiajie ;
Yu, Huogen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 260
[8]   S-Scheme Heterojunction TiO2/CdS Nanocomposite Nanofiber as H2-Production Photocatalyst [J].
Ge, Haonan ;
Xu, Feiyan ;
Cheng, Bei ;
Yu, Jiaguo ;
Ho, Wingkei .
CHEMCATCHEM, 2019, 11 (24) :6301-6309
[9]   Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N2 as the visible-light photocatalysts for photocatalytic H2 generation [J].
Han, Xin ;
An, Lin ;
Hu, Yue ;
Li, Yaogang ;
Hou, Chengyi ;
Wang, Hongzhi ;
Zhang, Qinghong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[10]   Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting [J].
Hu, Huihui ;
Wang, Zhiye ;
Cao, Lingyun ;
Zeng, Lingzhen ;
Zhang, Cankun ;
Lin, Wenbin ;
Wang, Cheng .
NATURE CHEMISTRY, 2021, 13 (04) :358-366