Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach

被引:28
|
作者
Yang, Dongchuan [1 ]
Guo, Ju-e [1 ]
Li, Yanzhao [1 ]
Sun, Shaolong [1 ]
Wang, Shouyang [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Ctr Forecasting Sci, Beijing 100190, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Short -term load forecasting; Time series modeling; Dynamic decomposition-reconstruction tech; nique; Neural networks; SECONDARY-DECOMPOSITION; MODE DECOMPOSITION; LEARNING-PARADIGM; UNIT COMMITMENT; OPTIMIZATION; ALGORITHM; REGRESSION; SELECTION; STRATEGY;
D O I
10.1016/j.energy.2022.125609
中图分类号
O414.1 [热力学];
学科分类号
摘要
Short-term load forecasting has evolved into an important aspect of power system in safe operation and rational dispatching. However, given the load series' instability and volatility, this is a challenging task. To this end, this study proposes a dynamic decomposition-reconstruction-ensemble approach by cleverly and dynamically combining two proven and effective techniques (i.e., the reconstruction techniques and the secondary decom-position techniques). In fact, by introducing the decomposition-reconstruction process based on the dynamic classification, filtering, and giving the criteria for determining the components that need to be decomposed again, our proposed model improves the decomposition-ensemble forecasting framework. Our proposed model makes full use of decomposition techniques, complexity analysis, reconstruction techniques, secondary decom-position techniques, and a neural network optimized by an automatic hyperparameter optimization algorithm. Besides, we compared our proposed model with state-of-the-art models including five models with reconstruction techniques and two models with secondary decomposition techniques. The experiment results demonstrate the superiority of our proposed dynamic decomposition-reconstruction technique in terms of forecasting accuracy, precise direction, equality, stability, correlation, comprehensive accuracy, and statistical tests. To conclude, our proposed model has the potential to be a useful tool for short-term load forecasting.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [22] Short-Term Load Forecasting Using Wavenet Ensemble Approaches
    Ribeiro, Gabriel Trierweiler
    Gritti, Marcos Cesar
    Hultmann Ayala, Helon Vicente
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 727 - 734
  • [23] Short-Term Electric Load Forecasting Based on Signal Decomposition and Improved TCN Algorithm
    Xiang, Xinjian
    Yuan, Tianshun
    Cao, Guangke
    Zheng, Yongping
    ENERGIES, 2024, 17 (08)
  • [24] Short-term load forecasting method based on secondary decomposition and improved hierarchical clustering
    Zha, Wenting
    Ji, Yongqiang
    Liang, Chen
    RESULTS IN ENGINEERING, 2024, 22
  • [25] Holographic Ensemble Forecasting Method for Short-Term Power Load
    Zhou, Mo
    Jin, Min
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 425 - 434
  • [26] Ensemble deep learning method for short-term load forecasting
    Guo, Haibo
    Tang, Lingling
    Peng, Yuexing
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 86 - 90
  • [27] Robust and Accurate Short-Term Load Forecasting: A Cluster Oriented Ensemble Learning Approach
    Fahiman, Fateme
    Erfani, Sarah M.
    Leekie, Christopher
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] An improved short-term load forecasting method of warship
    Li DongLiang
    Zhang XiaoFeng
    Qiao MingZhong
    Cheng Gang
    NUMBERS, INTELLIGENCE, MANUFACTURING TECHNOLOGY AND MACHINERY AUTOMATION, 2012, 127 : 575 - +
  • [29] A hybrid short-term load forecasting method based on improved ensemble empirical mode decomposition and back propagation neural network
    Yu, Yun-luo
    Li, Wei
    Sheng, De-ren
    Chen, Jian-hong
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2016, 17 (02): : 101 - 114
  • [30] An ensemble framework for short-term load forecasting based on parallel CNN and GRU with improved ResNet
    Hua, Heng
    Liu, Mingping
    Li, Yuqin
    Deng, Suhui
    Wang, Qingnian
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 216