Drugging the entire human proteome: Are we there yet?

被引:1
作者
Smith, Micholas Dean [1 ,2 ]
Quarles, L. Darryl [3 ,4 ]
Demerdash, Omar [5 ]
Smith, Jeremy C. [1 ,2 ]
机构
[1] Univ Tennessee, Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37830 USA
[2] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA
[3] Univ Tennessee, Hlth Sci Ctr, Dept Med, Memphis, TN 38163 USA
[4] ORRxD LLC, 3404 Olney Dr, Durham, NC 27705 USA
[5] Biosci Div, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
关键词
SCORING FUNCTION; LIGAND INTERACTIONS; ENSEMBLE DOCKING; AFFINITY PREDICTION; BINDING AFFINITIES; CRYO-EM; DESIGN; IMPACT; OPTIMIZATION; FLEXIBILITY;
D O I
10.1016/j.drudis.2024.103891
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Each of the 20,000 proteins in the human proteome is a potential target for compounds that bind to it and modify its function. The 3D structures of most of these proteins are now available. Here, we discuss the prospects for using these structures to perform proteome-wide virtual HTS (VHTS). We compare physics-based (docking) and AI VHTS approaches, some of which are now being applied with large databases of compounds to thousands of targets. Although preliminary proteome-wide screens are now within our grasp, further methodological developments are expected to improve the accuracy of the results.
引用
收藏
页数:10
相关论文
共 121 条
[71]   Impact of benchmark data set topology on the validation of virtual screening methods: Exploration and quantification by spatial statistics [J].
Rohrer, Sebastian G. ;
Baumann, Knut .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2008, 48 (04) :704-718
[72]   The druggable genome: an update [J].
Russ, AP ;
Lampel, S .
DRUG DISCOVERY TODAY, 2005, 10 (23-24) :1607-1610
[73]   Discovery of drugs that directly target the intrinsically disordered region of the androgen receptor [J].
Sadar, Marianne D. .
EXPERT OPINION ON DRUG DISCOVERY, 2020, 15 (05) :551-560
[74]   Molecular Docking: Challenges, Advances and its Use in Drug Discovery Perspective [J].
Saikia, Surovi ;
Bordoloi, Manobjyoti .
CURRENT DRUG TARGETS, 2019, 20 (05) :501-521
[75]   Modeling conformational states of proteins with AlphaFold [J].
Sala, D. ;
Engelberger, F. ;
Mchaourab, H. S. ;
Meiler, J. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
[76]   Homology Modeling and Docking Studies of Bcl-2 and Bcl-xL with Small Molecule Inhibitors: Identification and Functional Studies [J].
Salam, Abdul Ajees Abdul ;
Nayek, Upendra ;
Sunil, Dhanya .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (31) :2633-2663
[77]   Extended connectivity interaction features: improving binding affinity prediction through chemical description [J].
Sanchez-Cruz, Norberto ;
Medina-Franco, Jose L. ;
Mestres, Jordi ;
Barril, Xavier .
BIOINFORMATICS, 2021, 37 (10) :1376-1382
[78]   A comprehensive map of molecular drug targets [J].
Santos, Rita ;
Ursu, Oleg ;
Gaulton, Anna ;
Bento, A. Patricia ;
Donadi, Ramesh S. ;
Bologa, Cristian G. ;
Karlsson, Anneli ;
Al-Lazikani, Bissan ;
Hersey, Anne ;
Oprea, Tudor I. ;
Overington, John P. .
NATURE REVIEWS DRUG DISCOVERY, 2017, 16 (01) :19-34
[79]   How good are AlphaFold models for docking-based virtual screening? [J].
Scardino, Valeria ;
Di Filippo, Juan I. ;
Cavasotto, Claudio N. .
ISCIENCE, 2023, 26 (01)
[80]   Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis [J].
Scheiber, Josef ;
Chen, Bin ;
Milik, Mariusz ;
Sukuru, Sai Chetan K. ;
Bender, Andreas ;
Mikhailov, Dmitri ;
Whitebread, Steven ;
Hamon, Jacques ;
Azzaoui, Kamal ;
Urban, Laszlo ;
Glick, Meir ;
Davies, John W. ;
Jenkins, Jeremy L. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (02) :308-317