Removal of Cr(VI) by glutaraldehyde-crosslinked chitosan encapsulating microscale zero-valent iron: Synthesis, mechanism, and longevity

被引:15
作者
Duan, Yijun [1 ]
Liu, Fang [2 ]
Liu, Xiang [1 ]
Li, Miao [1 ]
机构
[1] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
[2] Inner Mongolia Univ, Transportat Inst, Hohhot 010070, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL SCIENCES | 2024年 / 142卷
基金
中国国家自然科学基金;
关键词
Chitosan; Glutaraldehyde; mZVI; Cr(VI); Groundwater; AQUEOUS-SOLUTIONS; ADSORPTION; KINETICS; SORPTION; MZVI; NANOCOMPOSITE; EFFICIENCY; ADSORBENT; SALINE; FRESH;
D O I
10.1016/j.jes.2023.07.005
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehydecrosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35 degrees C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects. (c) 2024 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [21] Removal of Cr(VI) from Aqueous Solution by Nanoscale Zero-Valent Iron
    Yin, Yanan
    Wang, Jianlong
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (08) : 5864 - 5868
  • [22] Oxalate Modification Dramatically Promoted Cr(VI) Removal with Zero-Valent Iron
    Liao, Minzi
    Wang, Xiaobing
    Cao, Shiyu
    Li, Meiqi
    Peng, Xing
    Zhang, Lizhi
    ACS ES&T WATER, 2021, 1 (09): : 2109 - 2118
  • [23] Nitrogen modification enhances conductivity and reactivity of sulfidated zero-valent iron: Mechanism and Cr(VI) removal
    Zhang, Yanshi
    Duan, Zhongkai
    Wang, Xiao
    Li, Yanlu
    Xu, Chunhua
    JOURNAL OF CLEANER PRODUCTION, 2023, 427
  • [24] Performance and mechanism of Cr(VI) removal by sludge-based biochar loaded with zero-valent iron
    Yang, Menghui
    DESALINATION AND WATER TREATMENT, 2024, 317
  • [25] Cr(VI) removal from groundwater by calcium alginate coating microscale zero-valent iron and activated carbon: Batch and column tests
    Duan, Yijun
    Meng, Fanbin
    Li, Miao
    Hou, Xiaoshu
    Zhang, Shuo
    Li, Jiacheng
    Liu, Xiang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (32)
  • [26] High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal
    Fan, Honglei
    Ren, Huiyun
    Ma, Xiaozhou
    Zhou, Shaofeng
    Huang, Jin
    Jiao, Weizhou
    Qi, Guisheng
    Liu, Youzhi
    CHEMICAL ENGINEERING JOURNAL, 2020, 390
  • [27] Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zero-valent iron aerogel from aqueous solution: Application performance and reaction mechanism
    Wang, Tingting
    Sun, Yongchang
    Bai, Lu
    Han, Caohui
    Sun, Xiaoyin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 306
  • [28] Nanoscale zero-valent iron loaded vermiform expanded graphite for the removal of Cr (VI) from aqueous solution
    Cai, Xinwei
    Qiu, Yangshuai
    Zhou, Yanhong
    Jiao, Xuan
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (08):
  • [29] Enhancing nitrate removal efficiency of micro-sized zero-valent iron by chitosan gel balls encapsulating
    An, Facai
    Feng, Xianlu
    Dang, Yan
    Sun, Dezhi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 823
  • [30] Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron
    Li, Meirong
    Tang, Chenliu
    Zhang, Weixian
    Ling, Lan
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 846 - 856