Electrified CO2 valorization in emerging nanotechnologies: a technical analysis of gas feedstock purity and nanomaterials in electrocatalytic and bio-electrocatalytic CO2 conversion

被引:0
|
作者
Jack, Joshua [1 ]
Weber, Aidan [3 ]
Bolzman, Sara [1 ]
McCord, Stephen [2 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Global CO2 Initiat, Global CO2 Initiat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
ENHANCED MICROBIAL ELECTROSYNTHESIS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; FERMENTATION; SELECTIVITY; NANOWIRES; COMMUNITY; HYDROGEN; REMOVAL; ACETATE;
D O I
10.1039/d3en00912b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineered nanomaterials that catalyze the transformation of waste carbon dioxide (CO2) into value-added products are crucial to mitigate climate change and enable a new circular carbon economy. Gas separations are expected to be a major cost barrier to CO2 conversion scalability, but the importance of feedstock purity is yet to be carefully evaluated in emerging nanotechnologies under environmentally relevant conditions. Here we assessed the performance of state-of-the-art electrocatalytic and bio-electrocatalytic CO2 reduction nanomaterials under a range of influent CO2 concentrations using data from recent publications. We quantitatively compared the activity of various electrocatalysts and discussed interactions at the nano-bio interface. Through this perspective, we developed initial life-cycle assessments and technoeconomic analyses for the integration of CO2 conversion nanotechnologies with natural and engineered systems. Altogether this evaluation can inform innovative nanomaterial design and delivers useful insights towards a sustainable future without waste or pollution.
引用
收藏
页码:1770 / 1783
页数:15
相关论文
共 50 条
  • [31] Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction
    Zhang, Xiaolong
    Li, Fengwang
    Zhang, Ying
    Bond, Alan M.
    Zhang, Jie
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7851 - 7858
  • [32] Bimetallenes for selective electrocatalytic conversion of CO2: a first-principles study
    Zhao, Zhonglong
    Lu, Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (25) : 12457 - 12462
  • [33] Selective Electrocatalytic Conversion of CO2 to HCOOH by a Cationic Rh2(II,II) Complex
    Manamperi, Hemanthi D.
    Witt, Suzanne E.
    Turro, Claudia
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (10) : 7306 - 7314
  • [34] Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles
    Dongare, Saudagar
    Singh, Neetu
    Bhunia, Haripada
    APPLIED SURFACE SCIENCE, 2021, 537
  • [35] Modulating CO2 Electrocatalytic Conversion to the Organics Pathway by the Catalytic Site Dimension
    Xu, Haiping
    Wang, Jianxin
    He, Haiying
    Hwang, Inhui
    Liu, Yuzi
    Sun, Chengjun
    Zhang, Haozhe
    Li, Tao
    Muntean, John V.
    Xu, Tao
    Liu, Di-Jia
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (15) : 10357 - 10366
  • [36] Opportunities for Electrocatalytic CO2 Reduction Enabled by Surface Ligands
    Zhu, Quansong
    Murphy, Catherine J.
    Baker, L. Robert
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (07) : 2829 - 2840
  • [37] Power to methanol technologies via CO2 recovery: CO2 hydrogenation and electrocatalytic routes
    Samiee, Leila
    Gandzha, Sergey
    REVIEWS IN CHEMICAL ENGINEERING, 2021, 37 (05) : 619 - 641
  • [38] Ag modified Cu hollow fiber for gas-phase CO2 electrocatalytic conversion to oxygenates
    Dong, Xiao
    Li, Guihua
    Chen, Wei
    Zhu, Chang
    Song, Yanfang
    Sun, Nannan
    Wei, Wei
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (07): : 816 - 824
  • [39] Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH
    Tian Jianjian
    Ma Xia
    Wang Min
    Yao Heliang
    Hua Zile
    Zhang Lingxia
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (12) : 1337 - +
  • [40] Electrocatalytic CO2 Reduction to Alcohols: Progress and Perspectives
    Long, Ying
    Chen, Zhijie
    Wu, Lan
    Liu, Xiaoqing
    Hou, Ya-Nan
    Vernuccio, Sergio
    Wei, Wei
    Wong, Wai-Yeung
    Ni, Bing-Jie
    SMALL SCIENCE, 2024, 4 (08):