A Temporal Second-Order Difference Scheme for Variable-Order-Time Fractional-Sub-Diffusion Equations of the Fourth Order

被引:0
作者
Zhang, Xin [1 ]
Bo, Yu [2 ]
Jin, Yuanfeng [1 ,2 ]
机构
[1] Harbin Engn Univ, Dept Math Sci, Harbin 150001, Peoples R China
[2] Yanbian Univ, Dept Math, Yanji 133002, Peoples R China
关键词
variable-order-time fractional-sub-diffusion equation of the fourth-order; compact finite difference scheme; solvable; stability; convergence; NUMERICAL-METHODS; DISCRETIZATION; MODELS;
D O I
10.3390/fractalfract8020112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we develop a compact finite difference scheme for a variable-order-time fractional-sub-diffusion equation of a fourth-order derivative term via order reduction. The proposed scheme exhibits fourth-order convergence in space and second-order convergence in time. Additionally, we provide a detailed proof for the existence and uniqueness, as well as the stability of scheme, along with a priori error estimates. Finally, we validate our theoretical results through various numerical computations.
引用
收藏
页数:14
相关论文
共 27 条
  • [1] A new difference scheme for the time fractional diffusion equation
    Alikhanov, Anatoly A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 424 - 438
  • [2] NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION
    Chen, Chang-Ming
    Liu, F.
    Anh, V.
    Turner, I.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) : 1740 - 1760
  • [3] Filtering using variable order vertical derivatives
    Cooper, GRJ
    Cowan, DR
    [J]. COMPUTERS & GEOSCIENCES, 2004, 30 (05) : 455 - 459
  • [4] Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation
    Diaz, G.
    Coimbra, C. F. M.
    [J]. NONLINEAR DYNAMICS, 2009, 56 (1-2) : 145 - 157
  • [5] Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations
    Du, Ruilian
    Alikhanov, Anatoly A.
    Sun, Zhi-Zhong
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2952 - 2972
  • [6] Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials
    El-Sayed, Adel A.
    Agarwal, Praveen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3978 - 3991
  • [7] Variable-order fractional calculus: A change of perspective
    Garrappa, Roberto
    Giusti, Andrea
    Mainardi, Francesco
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [8] An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order
    Gu, Xian-Ming
    Sun, Hai-Wei
    Zhao, Yong-Liang
    Zheng, Xiangcheng
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 120
  • [9] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133
  • [10] A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation
    Ji, Cui-cui
    Sun, Zhi-zhong
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (03) : 959 - 985