Membrane electrode assembly simulation of anion exchange membrane water electrolysis

被引:13
作者
Lawand, Khaled [1 ]
Sampathkumar, Suhas Nuggehalli [1 ]
Mury, Zoe [1 ]
Van Herle, Jan [1 ]
机构
[1] EPFL Swiss Fed Inst Technol Lausanne, Grp Energy Mat, Rue Ind 17, CH-1951 Sion, Switzerland
关键词
Anion exchange membrane electrolysis; COMSOL simulation; MEA characterization; Electrolysis; Sensitivity analysis; HYDROGEN-PRODUCTION; HYDROXIDE SOLUTIONS; DIFFUSION; DEGRADATION; POTASSIUM; PRESSURES; EVOLUTION; OXYGEN; MODEL;
D O I
10.1016/j.jpowsour.2023.234047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anion exchange membrane water electrolysis (AEMWE) offers a green hydrogen production method that eliminates the need for platinum group metals (PGM) as electrocatalysts. This study employs a COMSOL (R) 6.0 model to simulate a 1x1 cm(2) Ni fibre - Raney (R) Ni parallel to X37-50RT parallel to NiFe2O4 - SS316L fibre AEMWE membrane electrode assembly (MEA). The membrane is set at a thickness of 60 mu m, while the anodic and cathodic porous transport layers (PTL) are modelled with a thickness of 370 mu m, each having an average porosity of 0.70. The half-cell overpotentials are experimentally measured to validate the half-cell model in a three-electrode setup consisting of (working electrode) parallel to AGAR-Ag/AgCl parallel to Pt-wire (counter electrode). Two freshly prepared MEAs validated the (i) base case and (ii) sensitivity analysis models. The base case model validated the MEA results at 20 degrees C and 1 atm in 1M KOH electrolyte feed at 1.56 ml min(-1) cm(-2). The five parameters studied with the sensitivity analysis revealed the most influential parameters based on area-specific resistance (ASR) change in the following order (+ and - indicate increase and decrease in ASR, respectively): KOH concentration (-97%), membrane thickness (+ 9%), temperature (-4%), cathode feed type (<+0.5%), and KOH flow rate (>-0.5%).
引用
收藏
页数:17
相关论文
共 73 条
[1]   Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production [J].
Awasthi, A. ;
Scott, Keith ;
Basu, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) :14779-14786
[2]   WATER-VAPOR PARTIAL PRESSURES AND WATER ACTIVITIES IN POTASSIUM AND SODIUM-HYDROXIDE SOLUTIONS OVER WIDE CONCENTRATION AND TEMPERATURE RANGES [J].
BALEJ, J .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1985, 10 (04) :233-243
[3]  
Bard AJ., 2001, ELECTROCHEMICAL METH
[4]   Counterion Condensation in Nafion [J].
Beers, Keith M. ;
Hallinan, Daniel T., Jr. ;
Wang, Xin ;
Pople, John A. ;
Balsara, Nitash P. .
MACROMOLECULES, 2011, 44 (22) :8866-8870
[5]   Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies [J].
Biswas, Indro ;
Sanchez, Daniel G. ;
Schulze, Mathias ;
Mitzel, Jens ;
Kimmel, Benjamin ;
Gago, Aldo Saul ;
Gazdzicki, Pawel ;
Friedrich, K. Andreas .
ENERGIES, 2020, 13 (09)
[6]   An experimental investigation of bubble-induced free convection in a small electrochemical cell [J].
Boissonneau, P ;
Byrne, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) :767-775
[7]  
BUCK AL, 1981, J APPL METEOROL, V20, P1527, DOI 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO
[8]  
2
[9]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[10]   Good practice guide for papers on fuel cells and electrolysis cells for the Journal of Power Sources [J].
Chatenet, Marian ;
Benziger, Jay ;
Inaba, Minoru ;
Kjelstrup, Signe ;
Zawodzinski, Thomas ;
Raccichini, Rinaldo .
JOURNAL OF POWER SOURCES, 2020, 451