Next-generation direct reprogramming

被引:2
作者
Keshri, Riya [1 ,2 ]
Detraux, Damien [1 ,2 ]
Phal, Ashish [1 ,2 ,3 ]
Mccurdy, Clara [1 ,2 ,4 ]
Jhajharia, Samriddhi [1 ,2 ]
Chan, Tung Ching [1 ,2 ]
Mathieu, Julie [2 ,5 ]
Ruohola-Baker, Hannele [1 ,2 ,3 ]
机构
[1] Univ Washington, Sch Med, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Stem Cell & Regenerat Med, Sch Med, Seattle, WA 98195 USA
[3] Univ Washington, Coll Engn, Dept Bioengn, Seattle, WA 98195 USA
[4] Univ Washington, Inst Prot Design, Seattle, WA USA
[5] Univ Washington, Sch Med, Dept Comparat Med, Seattle, WA USA
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2024年 / 12卷
关键词
transdifferentiation; direct reprogramming; partial reprogramming; pioneer factors; aging; signaling; skeletal muscle; cardiac muscles; ADULT HUMAN FIBROBLASTS; DIRECT CONVERSION; TRANSCRIPTION FACTORS; FUNCTIONAL-NEURONS; VASCULAR REGENERATION; CARDIAC FIBROBLASTS; ALZHEIMERS-DISEASE; DERMAL FIBROBLASTS; DNA METHYLATION; GENE-EXPRESSION;
D O I
10.3389/fcell.2024.1343106
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer's disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
引用
收藏
页数:11
相关论文
共 118 条
  • [1] Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity
    Abad, Maria
    Hashimoto, Hisayuki
    Zhou, Huanyu
    Morales, Maria Gabriela
    Chen, Beibei
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. STEM CELL REPORTS, 2017, 8 (03): : 548 - 560
  • [2] Bayesian Networks Predict Neuronal Transdifferentiation
    Ainsworth, Richard I.
    Ai, Rizi
    Ding, Bo
    Li, Nan
    Zhang, Kai
    Wang, Wei
    [J]. G3-GENES GENOMES GENETICS, 2018, 8 (07): : 2501 - 2511
  • [3] Direct Reprogramming of Adult Human Fibroblasts to Functional Neurons under Defined Conditions
    Ambasudhan, Rajesh
    Talantova, Maria
    Coleman, Ronald
    Yuan, Xu
    Zhu, Saiyong
    Lipton, Stuart A.
    Ding, Sheng
    [J]. CELL STEM CELL, 2011, 9 (02) : 113 - 118
  • [4] How to make a midbrain dopaminergic neuron
    Arenas, Ernest
    Denham, Mark
    Villaescusa, J. Carlos
    [J]. DEVELOPMENT, 2015, 142 (11): : 1918 - 1936
  • [5] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [6] KMT2B Is Selectively Required for Neuronal Transdifferentiation, and Its Loss Exposes Dystonia Candidate Genes
    Barbagiovanni, Giulia
    Germain, Pierre-Luc
    Zech, Michael
    Atashpaz, Sina
    Lo Riso, Pietro
    D'Antonio-Chronowska, Agnieszka
    Tenderini, Erika
    Caiazzo, Massimiliano
    Boesch, Sylvia
    Jech, Robert
    Haslinger, Bernhard
    Broccoli, Vania
    Stewart, Adrian Francis
    Winkelmann, Juliane
    Testa, Giuseppe
    [J]. CELL REPORTS, 2018, 25 (04): : 988 - 1001
  • [7] Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential
    Berkes, CA
    Bergstrom, DA
    Penn, BH
    Seaver, KJ
    Knoepfler, PS
    Tapscott, SJ
    [J]. MOLECULAR CELL, 2004, 14 (04) : 465 - 477
  • [8] Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells
    Berninger, Benedikt
    Guillemot, Francois
    Goetz, Magdalena
    [J]. EUROPEAN JOURNAL OF NEUROSCIENCE, 2007, 25 (09) : 2581 - 2590
  • [9] Biesiada E, 1999, MOL CELL BIOL, V19, P2577
  • [10] Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells
    Black, Joshua B.
    Adler, Andrew F.
    Wang, Hong-Gang
    D'Ippolito, Anthony M.
    Hutchinson, Hunter A.
    Reddy, Timothy E.
    Pitt, Geoffrey S.
    Leong, Kam W.
    Gersbach, Charles A.
    [J]. CELL STEM CELL, 2016, 19 (03) : 406 - 414