Application of convolutional neural networks trained on optical images for object detection in radar images

被引:0
作者
Pavlov, V. A. [1 ,2 ]
Belov, A. A. [1 ,2 ]
Volvenko, S. V. [1 ,2 ]
Rashich, A., V [1 ,2 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[2] Peter Great St Petersburg Polytech Univ, Inst Elect & Telecommun, St Petersburg, Russia
关键词
speckle noise; radar image; SAR; noise reduction; image processing; SSIM; GMSD; object detection; neural networks;
D O I
10.18287/2412-6179-CO-1316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Due to the small number of annotated radar image datasets, the use of optical images for training neural networks designed to detect objects in radar images seems promising. However, optical images have some significant differences from radar images and an experimental investigation of this possibility is required. In this work we investigate the applicability of such an approach and show that in the case of detection of ships good results can be achieved. In addition, it is shown that preliminary filtering of speckle noise can improve the results.
引用
收藏
页码:253 / 259
页数:8
相关论文
共 50 条
[31]   Multimodal Convolutional Neural Network for Object Detection Using RGB-D Images [J].
Mocanu, Irina ;
Clapon, Cosmin .
2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, :307-310
[32]   Object detection of transmission line visual images based on deep convolutional neural network [J].
Zhou Zhu-bo ;
Gao Jiao ;
Zhang Wei ;
Wang Xiao-jing ;
Zhang Jiang .
CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2018, 33 (04) :317-325
[33]   Aircraft Detection for Remote Sensing Images Based on Deep Convolutional Neural Networks [J].
Zhou, Liming ;
Yan, Haoxin ;
Shan, Yingzi ;
Zheng, Chang ;
Liu, Yang ;
Zuo, Xianyu ;
Qiao, Baojun .
JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021
[34]   Parallel Convolutional Neural Networks for Object Detection [J].
Olugboja, Adedeji ;
Wang, Zenghui ;
Sun, Yanxia .
JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (04) :279-286
[35]   Object Detection Using Convolutional Neural Networks [J].
Galvez, Reagan L. ;
Bandala, Argel A. ;
Dadios, Elmer P. ;
Vicerra, Ryan Rhay P. ;
Maningo, Jose Martin Z. .
PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, :2023-2027
[36]   Sea surface reconstruction from marine radar images using deep convolutional neural networks [J].
Zhao, Mingxu ;
Zheng, Yaokun ;
Lin, Zhiliang .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2023, 8 (06) :647-661
[37]   Optimization Of Convolutional Neural Network For Object Recognition On Satellite Images [J].
Khryashchev, V. V. ;
Pavlov, V. A. ;
Ostrovskaya, A. A. ;
Semenov, A. S. .
2018 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2018,
[38]   Ship Classification in TerraSAR-X Images With Convolutional Neural Networks [J].
Bentes, Carlos ;
Velotto, Domenico ;
Tings, Bjoern .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (01) :258-266
[39]   Segmentation of Drosophila heart in optical coherence microscopy images using convolutional neural networks [J].
Duan, Lian ;
Qin, Xi ;
He, Yuanhao ;
Sang, Xialin ;
Pan, Jinda ;
Xu, Tao ;
Men, Jing ;
Tanzi, Rudolph E. ;
Li, Airong ;
Ma, Yutao ;
Zhou, Chao .
JOURNAL OF BIOPHOTONICS, 2018, 11 (12)
[40]   Minimal Optimal Region Generation for Enhanced Object Detection in Aerial Images Using Super-Resolution and Convolutional Neural Networks [J].
Garcia-Aguilar, Ivan ;
Deka, Lipika ;
Luque-Baena, Rafael Marcos ;
Dominguez, Enrique ;
Lopez-Rubio, Ezequiel .
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 :276-287