Subspace segmentation based co-evolutionary algorithm for balancing convergence and diversity in many-objective optimization

被引:11
作者
Liu, Genggeng [1 ]
Pei, Zhenyu [1 ]
Liu, Nengxian [1 ]
Tian, Ye [2 ]
机构
[1] Fuzhou Univ, Coll Comp & Big Data, Fuzhou 350116, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
关键词
Many-objective optimization; Subspace segmentation; Co-evolution; Archive; MULTIOBJECTIVE GENETIC ALGORITHM; PARETO FRONT; DESIGN; DECOMPOSITION; MOEA/D;
D O I
10.1016/j.swevo.2023.101410
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increase of the objective dimension of optimization problems, the effect of comparing individuals through Pareto dominance relation drops sharply. While some algorithms enhance Pareto dominance via diversity preservation strategies, performance indicators, and reference vectors, many of them encounter difficulties in balancing the convergence and diversity of populations. Therefore, this paper proposes a subspace segmentation based co-evolutionary algorithm for balancing convergence and diversity in many-objective optimization. First, the decision space is divided into a convergence subspace and a diversity subspace, which are searched in the early and late stages to improve the population convergence and diversity, respectively. Second, a capacity adaptively adjusted archive is used to retain elite individuals with better convergence in the population, which is further used to mate with the population. Moreover, an indicator with penalty factor is proposed to retain the boundary individuals so as to maintain the population diversity. Comparing with 6 advanced many-objective evolutionary algorithms on 63 benchmark cases, the proposed algorithm obtains smallest IGD on 36 benchmark cases, the experimental results show that the proposed algorithm can balance convergence and diversity well and has exhibit competitiveness.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An Evolutionary Algorithm Based on Minkowski Distance for Many-Objective Optimization
    Xu, Hang
    Zeng, Wenhua
    Zeng, Xiangxiang
    Yen, Gary G.
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) : 3968 - 3979
  • [22] An indicator and adaptive region division based evolutionary algorithm for many-objective optimization
    Zhou, Jiajun
    Yao, Xifan
    Gao, Liang
    Hu, Chengyu
    APPLIED SOFT COMPUTING, 2021, 99
  • [23] An adaptive convergence enhanced evolutionary algorithm for many-objective optimization problems
    Xu, Ying
    Zhang, Huan
    Zeng, Xiangxiang
    Nojima, Yusuke
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [24] A new uniform evolutionary algorithm based on decomposition and CDAS for many-objective optimization
    Dai Cai
    Wang Yuping
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 131 - 142
  • [25] An adaptive clustering-based evolutionary algorithm for many-objective optimization problems
    Liu, Songbai
    Yu, Qiyuan
    Lin, Qiuzhen
    Tan, Kay Chen
    INFORMATION SCIENCES, 2020, 537 : 261 - 283
  • [26] A New Dominance Relation-Based Evolutionary Algorithm for Many-Objective Optimization
    Yuan, Yuan
    Xu, Hua
    Wang, Bo
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (01) : 16 - 37
  • [27] An Improved Scalarization-based Dominance Evolutionary Algorithm for Many-Objective Optimization
    Khan, Burhan
    Hanoun, Samer
    Johnstone, Michael
    Lim, Chee Peng
    Creighton, Douglas
    Nahavandi, Saeid
    2019 13TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON), 2019,
  • [28] A decomposition-based evolutionary algorithm for scalable multi/many-objective optimization
    Chen, Jiaxin
    Ding, Jinliang
    Tan, Kay Chen
    Chen, Qingda
    MEMETIC COMPUTING, 2021, 13 (03) : 413 - 432
  • [29] Pressure point driven evolutionary algorithm for many-objective optimization
    Zhu, Jianghan
    Chen, Huangke
    Wu, Guohua
    Chen, Li
    Li, Haifeng
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 51
  • [30] Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization
    Bian, Hongli
    Tian, Jie
    Yu, Jialiang
    Yu, Han
    KNOWLEDGE-BASED SYSTEMS, 2023, 274