Energy transport between heat baths with oscillating temperatures

被引:9
作者
Chen, Renai [1 ,2 ]
Gibson, Tammie [1 ]
Craven, Galen T. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
THERMAL CONDUCTANCE; HARMONIC CRYSTAL; FLOW; DEVICES; LAW;
D O I
10.1103/PhysRevE.108.024148
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Energy transport is a fundamental physical process that plays a prominent role in the function and performance of myriad systems and technologies. Recent experimental measurements have shown that subjecting a macroscale system to a time-periodic temperature gradient can increase thermal conductivity in comparison to a static temperature gradient. Here, we theoretically examine this mechanism in a nanoscale model by applying a stochastic Langevin framework to describe the energy transport properties of a particle connecting two heat baths with different temperatures, where the temperature difference between baths is oscillating in time. Analytical expressions for the energy flux of each heat bath and for the system itself are derived for the case of a free particle and a particle in a harmonic potential. We find that dynamical effects in the energy flux induced by temperature oscillations give rise to complex energy transport hysteresis effects. The presented results suggest that applying time-periodic temperature modulations is a potential route to control energy storage and release in molecular devices and nanosystems.
引用
收藏
页数:13
相关论文
共 87 条
[1]   Oscillating states of periodically driven anharmonic Langevin systems [J].
Awasthi, Shakul ;
Dutta, Sreedhar B. .
PHYSICAL REVIEW E, 2021, 103 (06)
[2]   PERIODICALLY ROCKED THERMAL RATCHETS [J].
BARTUSSEK, R ;
HANGGI, P ;
KISSNER, JG .
EUROPHYSICS LETTERS, 1994, 28 (07) :459-464
[3]   Thermal memristor and neuromorphic networks for manipulating heat flow [J].
Ben-Abdallah, Philippe .
AIP ADVANCES, 2017, 7 (06)
[4]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[5]  
Bonetto F., 2000, Mathematical Physics 2000, P128, DOI DOI 10.1142/9781848160224_0008
[6]   Pyroelectric materials and devices for energy harvesting applications [J].
Bowen, C. R. ;
Taylor, J. ;
LeBoulbar, E. ;
Zabek, D. ;
Chauhan, A. ;
Vaish, R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3836-3856
[7]   Periodic thermodynamics of open quantum systems [J].
Brandner, Kay ;
Seifert, Udo .
PHYSICAL REVIEW E, 2016, 93 (06)
[8]   Thermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations [J].
Brandner, Kay ;
Saito, Keiji ;
Seifert, Udo .
PHYSICAL REVIEW X, 2015, 5 (03)
[9]   GENERALIZED LANGEVIN-EQUATIONS WITH TIME-DEPENDENT TEMPERATURE [J].
BREY, JJ ;
Casado-Pascual, J .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) :713-722
[10]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818