Macro-micro structure engineering of bio-spore-derived hard carbon as an efficient anode in sodium ion batteries

被引:27
作者
Tang, Taijin [1 ]
Zhu, Wenli [1 ]
Lan, Pingping [1 ]
Lan, Xingxian [1 ]
Xie, Huarui [1 ]
Shen, Pei Kang [1 ]
Tian, Zhi Qun [1 ]
机构
[1] Guangxi Univ, Collaborat Innovat Ctr Sustainable Energy Mat, Guangxi Key Lab Electrochem Energy Mat, Sch Phys Sci & Technol,State Key Lab Featured Met, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium ion batteries; Anode; Spores; Sodium storage; Hard carbon; INITIO MOLECULAR-DYNAMICS; STORAGE; INSERTION;
D O I
10.1016/j.cej.2023.146212
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Elucidating the macro-micro structures of hard carbon is critical to address the issues of deficient Na+ storage capacity at the anode in Na+ ion batteries. Herein, hard carbon materials with various macro-micro structures were synthesized by pyrolyzing the spores of Calvatia Gigantea (SCG) as precursors treated by a coupling strategy with a dehydration process via concentrated H2SO4 treatment and the removal of inherent Si species by NaOH. Research results demonstrate that the process of concentrated H2SO4 pretreatment can induce the collapse of original hollow spheres of SCG to form specific hard carbon hollow hemispheres, while the NaOH leaching treatment can further modulate the microstructures of hard carbon. Attributed to the unique characteristics of specific hollow hemi-spherical morphology, ultra-low surface area, rich closed pore and appropriate layer spacing, the hard carbon not only exhibits outstanding specific capacity up to 500 mA h g-1 with a high initial Coulombic efficiency of 90.23 % for Na+ storage, but also presents excellent high-rate capability with 254.88 mA h g-1 at 5 A/g and cycling stability with a capacity retention rate of >= 80 % after 4102 cycles. The outstanding performance exceeds the vast majority of reported hard carbons for Na+ storage. Theoretical analysis further reveals that increasing closed pores constructed by distorted graphite-like layers together with proper lattice distance and curvature in hard carbon is essential to improve Na+ storage capacity. The coupling strategy of tuning the morphologies and microstructures of spore-derived hard carbon in the work provides new insights for developing advanced hard carbon with efficient Na+ storage performance.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Revealing the Intercalation Mechanisms of Lithium, Sodium, and Potassium in Hard Carbon [J].
Alvin, Stevanus ;
Cahyadi, Handi Setiadi ;
Hwang, Jieun ;
Chang, Wonyoung ;
Kwak, Sang Kyu ;
Kim, Jaehoon .
ADVANCED ENERGY MATERIALS, 2020, 10 (20)
[2]   Revealing sodium ion storage mechanism in hard carbon [J].
Alvin, Stevanus ;
Yoon, Dohyeon ;
Chandra, Christian ;
Cahyadi, Handi Setiadi ;
Park, Jae-Ho ;
Chang, Wonyoung ;
Chung, Kyung Yoon ;
Kim, Jaehoon .
CARBON, 2019, 145 :67-81
[3]   Exploring Na-ion technological advances: Pathways from energy to power [J].
Arnaiz, M. ;
Gomez-Camer, J. L. ;
Gonzalo, E. ;
Drewett, N. E. ;
Ajuria, J. ;
Goikolea, E. ;
Galceran, M. ;
Rojo, T. .
MATERIALS TODAY-PROCEEDINGS, 2021, 39 :1118-1131
[4]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[5]   Endorsing Na plus storage mechanism in low tortuosity, high plateau capacity hard carbon towards development of high-performance sodium-ion pouch cells [J].
Bhawana, K. ;
Gautam, Manoj ;
Mishra, Govind Kumar ;
Chakrabarty, Nilanjan ;
Wajhal, S. ;
Kumar, Dhruv ;
Dutta, Dimple P. ;
Mitra, Sagar .
CARBON, 2023, 214
[6]   Structural Engineering of Multishelled Hollow Carbon Nanostructures for High-Performance Na-Ion Battery Anode [J].
Bin, De-Shan ;
Li, Yunming ;
Sun, Yong-Gang ;
Duan, Shu-Yi ;
Lu, Yaxiang ;
Ma, Jianmin ;
Cao, An-Min ;
Hu, Yong-Sheng ;
Wan, Li-Jun .
ADVANCED ENERGY MATERIALS, 2018, 8 (26)
[7]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[8]   Regulating the Interlayer Spacings of Hard Carbon Nanofibers Enables Enhanced Pore Filling Sodium Storage [J].
Cai, Congcong ;
Chen, Yongan ;
Hu, Ping ;
Zhu, Ting ;
Li, Xinyuan ;
Yu, Qiang ;
Zhou, Liang ;
Yang, Xiaoyu ;
Mai, Liqiang .
SMALL, 2022, 18 (06)
[9]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[10]   Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization [J].
Chen, Dequan ;
Zhang, Wen ;
Luo, Kangying ;
Song, Yang ;
Zhong, Yanjun ;
Liu, Yuxia ;
Wang, Gongke ;
Zhong, Benhe ;
Wu, Zhenguo ;
Guo, Xiaodong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2244-2262