Enhancing the Potential of Polymer Composites Using Biochar as a Filler: A Review

被引:19
作者
Aboughaly, Mohamed [1 ]
Babaei-Ghazvini, Amin [1 ]
Dhar, Piyali [1 ]
Patel, Ravi [1 ]
Acharya, Bishnu [1 ]
机构
[1] Univ Saskatchewan, Dept Chem & Biol Engn, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
biochar; carbonaceous fillers; polymer properties; carbonization; pyrolysis; FILM CASTING PROCESS; CARBON NANOTUBES; MECHANICAL-PROPERTIES; SLOW PYROLYSIS; ENERGY DEMAND; FIBER; BIOCOMPOSITES; CONDUCTIVITY; EXTRUSION; MATRIX;
D O I
10.3390/polym15193981
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This article discusses the scope biochar's uses; biochar is a sustainable organic material, rich in carbon, that can be synthesized from various types of biomass feedstock using thermochemical reactions such as pyrolysis or carbonization. Biochar is an eco-friendly filler material that can enhance polymer composites' mechanical, thermal, and electrical performances. In comparison to three inorganic fillers, namely carbon black, carbon nanotubes (CNT), and carbon filaments, this paper explores the optimal operating conditions for regulating biochar's physical characteristics, including pore size, macro- and microporosity, and mechanical, thermal, and electrical properties. Additionally, this article presents a comparative analysis of biochar yield from various thermochemical processes. Moreover, the review examines how the surface functionality, surface area, and particle size of biochar can influence its mechanical and electrical performance as a filler material in polymer composites at different biochar loads. The study showcases the outstanding properties of biochar and recommends optimal loads that can improve the mechanical, thermal, and electrical properties of polymer composites.
引用
收藏
页数:32
相关论文
共 160 条
[21]   Effect of heating rate and feedstock nature on electrical conductivity of biochar and biochar-based composites [J].
Bartoli, Mattia ;
Troiano, Maurizio ;
Giudicianni, Paola ;
Amato, Davide ;
Giorcelli, Mauro ;
Solimene, Roberto ;
Tagliaferro, Alberto .
APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2022, 12
[22]   Recent Advances in Biochar Polymer Composites [J].
Bartoli, Mattia ;
Arrigo, Rossella ;
Malucelli, Giulio ;
Tagliaferro, Alberto ;
Duraccio, Donatella .
POLYMERS, 2022, 14 (12)
[23]   Compatibilization of toughened polypropylene/biocarbon biocomposites: A full factorial design optimization of mechanical properties [J].
Behazin, Ehsan ;
Misra, Manjusri ;
Mohanty, Amar K. .
POLYMER TESTING, 2017, 61 :364-372
[24]   Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres [J].
Benkhelladi, Asma ;
Laouici, Hamdi ;
Bouchoucha, Ali .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 108 (03) :895-916
[25]  
Biron M., 2020, A Practical Guide to Plastics Sustainability: Concept, Solutions, and Implementation, DOI 10.1016/B978-0-12-821539-5.00009-4
[26]  
Bokobza L, 2014, KGK-KAUT GUMMI KUNST, V67, P45
[27]   Economic analysis of microalgae biodiesel production in a small-scale facility [J].
Branco-Vieira, M. ;
Mata, T. M. ;
Martins, A. A. ;
Freitas, M. A., V ;
Caetano, N. S. .
ENERGY REPORTS, 2020, 6 :325-332
[28]   Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate-co-adipate) Biocomposites [J].
Cappello, Miriam ;
Rossi, Damiano ;
Filippi, Sara ;
Cinelli, Patrizia ;
Seggiani, Maurizia .
MATERIALS, 2023, 16 (02)
[29]   Biochar-augmented carbon-negative concrete [J].
Chen, Liang ;
Zhang, Yuying ;
Wang, Lei ;
Ruan, Shaoqin ;
Chen, Junfeng ;
Li, Huanyu ;
Yang, Jian ;
Mechtcherine, Viktor ;
Tsang, Daniel C. W. .
CHEMICAL ENGINEERING JOURNAL, 2022, 431
[30]   Interface design of carbon filler/polymer composites for electromagnetic interference shielding [J].
Chen, Runxiao ;
Yu, Rongrong ;
Pei, Xiaoyuan ;
Wang, Wei ;
Li, Diansen ;
Xu, Zhiwei ;
Luo, Shigang ;
Tang, Youhong ;
Deng, Hui .
NEW JOURNAL OF CHEMISTRY, 2021, 45 (19) :8370-8385