Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis

被引:1
|
作者
Wang, Sha [1 ,2 ]
Sun, Zhe [1 ]
Ahmad, Mehraj [3 ,4 ,5 ]
Fu, Wenkai [1 ]
Gao, Zongxia [1 ]
机构
[1] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Peoples R China
[3] Nanjing Forestry Univ, Coll Light Ind & Food, Dept Food Sci & Engn, Nanjing 210037, Peoples R China
[4] Nanjing Forestry Univ, Joint Int Res Lab Lignocellulos Funct Mat, Nanjing 210037, Peoples R China
[5] Nanjing Forestry Univ, Prov Key Lab Pulp & Paper Sci & Tech, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose; Reverse electrodialysis; Nanofluidic; Ion-selectivity; Osmotic power; NANOCHANNEL MEMBRANE; GRAPHENE OXIDE; ION-TRANSPORT; WATER; NANOCELLULOSE;
D O I
10.1016/j.ijbiomac.2023.126608
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reverse electrodialysis (RED) using nanofluidic ion-selective membrane may convert the salinity difference between seawater and river water into electricity. However, heterogeneous modification reactions of cellulose commonly leads to the inhomogeneous distribution of surface charges, thereby hampering the improvement of cellulose-based nanofluidic membranes for energy conversion. Herein, RED devices based on cellulose nanofibers (CNF) membranes with opposite charge characteristics were developed for the generation of salinity gradient power. Anion-CNF membrane (A-CNF) with varying negative charge densities was synthesized using 2,2,6,6-Tetramethylpiperidine 1-oxy radical (TEMPO) oxidation modification, whereas cation-CNF membrane (C-CNF) was prepared through etherification. By mixing artificial seawater and river water, the output power density of CNF RED device is up to 2.87 W m(-2). The output voltage of 30 RED units connected in series may reach up to 3.11 V, which can be used to directly power tiny electronic devices viz. LED lamp, calculator, etc. The results of this work provide a feasible possibility for widespread application of ion exchange membranes for salinity gradient energy harvesting.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation
    Hong, Jin Gi
    Chen, Yongsheng
    Journal of Membrane Science, 2014, 460 : 139 - 147
  • [2] Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation
    Hong, Jin Gi
    Chen, Yongsheng
    JOURNAL OF MEMBRANE SCIENCE, 2014, 460 : 139 - 147
  • [3] Numerical simulation of salinity gradient power generation using reverse electrodialysis
    Jin, Dongxu
    Xi, Ruyu
    Xu, Shiming
    Wang, Ping
    Wu, Xi
    DESALINATION, 2021, 512
  • [4] Power Generation from Salinity Gradient by Reverse Electrodialysis in Silicon Nitride Nanopores
    Ma, Jian
    Zeng, Qingyu
    Zhan, Lijian
    Mo, Jingwen
    Zhang, Yan
    Ni, Zhonghua
    NANO, 2020, 15 (11)
  • [5] Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes
    Jang, Jaewon
    Kang, Yesol
    Han, Ji-Hyung
    Jang, Kyunghoon
    Kim, Chang-Min
    Kim, In S.
    DESALINATION, 2020, 491
  • [6] Tailor-Made Anion-Exchange Membranes for Salinity Gradient Power Generation Using Reverse Electrodialysis
    Guler, Enver
    Zhang, Yali
    Saakes, Michel
    Nijmeijer, Kitty
    CHEMSUSCHEM, 2012, 5 (11) : 2262 - 2270
  • [7] Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation
    Long, Rui
    Kuang, Zhengfei
    Liu, Zhichun
    Liu, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (10) : 7295 - 7302
  • [8] High-performance ionic diode membrane for salinity gradient power generation
    Guo, W. (wguo@iccas.ac.cn), 1600, American Chemical Society (136):
  • [9] High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
    Gao, Jun
    Guo, Wei
    Feng, Dan
    Wang, Huanting
    Zhao, Dongyuan
    Jiang, Lei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) : 12265 - 12272
  • [10] Response of salinity gradient power generation to inflow mode and temperature difference by reverse electrodialysis
    Cui, Wei-Zhe
    Ji, Zhi-Yong
    Tumba, Kaniki
    Zhang, Zhong-De
    Wang, Jing
    Zhang, Zhao-Xiang
    Liu, Jie
    Zhao, Ying-Ying
    Yuan, Jun-Sheng
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 303