Spatial-temporal mapping of forest vegetation cover changes along highways in Brunei using deep learning techniques and Sentinel-2 images

被引:16
作者
Kalinaki, Kassim [1 ,3 ]
Malik, Owais Ahmed [1 ]
Lai, Daphne Teck Ching [1 ]
Sukri, Rahayu Sukmaria [2 ]
Bin Haji Abdul Wahab, Rodzay [2 ]
机构
[1] Univ Brunei Darussalam, Sch Digital Sci, BE-1410 Gadong, Brunei
[2] Univ Brunei Darussalam, Inst Biodivers & Environm Res IBER, BE-1410 Gadong, Brunei
[3] Islamic Univ Uganda IUIU, Dept Comp Sci, POB 2555, Mbale, Uganda
关键词
Forest change; Deep learning; Sentinel-2; images; Semantic segmentation; Highways; RESOURCES; ECOSYSTEM; NETWORKS; DYNAMICS;
D O I
10.1016/j.ecoinf.2023.102193
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Infrastructure development is a leading driver of forest cover loss in the tropics, resulting in a significant decrease in biodiversity. With recent advancements in digital image processing and satellite imagery techniques, this study presents an approach for tracking forest cover alterations along a recently constructed highway in Brunei. Specifically, this paper harnesses the power of cutting-edge deep learning (DL) models; U-Net and Deeplabv3+, to classify forest and non-forest features from Sentinel-2 satellite images captured along the Telisai-Lumut highway between 2018 and 2022. A computational performance analysis and network comparison revealed that the Deeplabv3+ had a remarkable semantic segmentation performance, with a mean intersection over union of 0.9247, followed by an ensemble of four networks, with a mean intersection over union of 0.9171. The best model consistently outperformed other models in segmenting forest and non-forest features, with an intersection over union (IOU) of 0.9463 and 0.9031, respectively. Moreover, deploying hyperparameter optimization allowed us to assess the model's sensitivity to different hyperparameters for better results. Furthermore, forest change statistics were computed using the best model's generated forest change maps, and the results indicated a 16.7% gain in the overall forest vegetation cover along the highway, demonstrating the validity of the results. These reproducible findings will provide forest managers and ecologists with near real-time information on the status, health, and extent of forest ecosystems. This study's results have critical implications for using DL to monitor forest cover changes and will be of great interest to the scientific community as they open new avenues for future research and underline the need for continued innovation in this important field.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Multi-temporal analysis of forest canopy cover in Ngel Nyaki Forest Reserve using the Sentinel-1 and Sentinel-2 data
    Abdulrahaman, Ahmed Onimisi
    Chapman, Hazel
    Tariq, Aqil
    Elias, Peter
    Areh, Moses Olorunfemi
    Abdullah, Zuliehat Ohunene
    Soufan, Walid
    [J]. AFRICAN GEOGRAPHICAL REVIEW, 2024,
  • [42] Mapping Irrigated Croplands from Sentinel-2 Images Using Deep Convolutional Neural Networks
    Li, Wei
    Sun, Ying
    Zhou, Yanqing
    Gong, Lu
    Li, Yaoming
    Xin, Qinchuan
    [J]. REMOTE SENSING, 2023, 15 (16)
  • [43] Sentinel-2 Images at 2.5m Spatial Resolution via Deep- Learning: A Case Study in Zakythnos
    Panagiotopoulou, Antigoni
    Bratsolis, Emmanuel
    Grammatikopoulos, Lazaros
    Petsa, Eleni
    Charou, Eleni
    Poirazidis, Konstantinos
    Martinis, Aristotelis
    Madamopoulos, Nicholas
    [J]. 2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [44] Agricultural Land Cover Mapping through Two Deep Learning Models in the Framework of EU's CAP Activities Using Sentinel-2 Multitemporal Imagery
    Papadopoulou, Eleni
    Mallinis, Giorgos
    Siachalou, Sofia
    Koutsias, Nikos
    Thanopoulos, Athanasios C.
    Tsaklidis, Georgios
    [J]. REMOTE SENSING, 2023, 15 (19)
  • [45] Improving National Forest Mapping in Romania Using Machine Learning and Sentinel-2 Multispectral Imagery
    Keskes, Mohamed Islam
    Mohamed, Aya Hamed
    Borz, Stelian Alexandru
    Nita, Mihai Daniel
    [J]. REMOTE SENSING, 2025, 17 (04)
  • [46] Detection and Quantification of Vegetation Losses with Sentinel-2 Images Using Bi-Temporal Analysis of Spectral Indices and Transferable Random Forest Model
    Rynkiewicz, Alicja
    Hoscilo, Agata
    Aune-Lundberg, Linda
    Nilsen, Anne B.
    Lewandowska, Aneta
    [J]. REMOTE SENSING, 2025, 17 (06)
  • [47] Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data
    Cai, Bowen
    Shao, Zhenfeng
    Huang, Xiao
    Zhou, Xuechao
    Fang, Shenghui
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [48] Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information
    Zhao, Hongwei
    Duan, Sibo
    Liu, Jia
    Sun, Liang
    Reymondin, Louis
    [J]. REMOTE SENSING, 2021, 13 (14)
  • [49] Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models
    Al-Dabbagh, Ali Mahdi
    Ilyas, Muhammad
    [J]. GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [50] Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
    Ienco, Dino
    Interdonato, Roberto
    Gaetano, Raffaele
    Dinh Ho Tong Minh
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 11 - 22