Global weak solutions to a quantum kinetic-fluid model with large initial data

被引:1
作者
Li, Yue [1 ]
Sun, Baoyan [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic-fluid model; Quantum Bohm potential; Nonlinear friction force; Density-dependent viscosity; Weak solutions; NAVIER-STOKES EQUATIONS; ASYMPTOTIC ANALYSIS; VLASOV EQUATIONS; EULER; SEDIMENTATION; EXISTENCE; SYSTEM;
D O I
10.1016/j.nonrwa.2022.103822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a quantum kinetic-fluid model in one-dimensional torus. This model consists of the Vlasov-Fokker-Planck equation coupled with the compressible quantum Navier-Stokes equations via a nonlinear friction force depends on the density of the fluid. The quantum fluid with degenerate viscosity is assumed to be isentropic (adiabatic coefficient gamma > 1). We establish the global weak solutions to this model with arbitrary large initial data. This is the first result on existence of solutions to kinetic-fluid models with density-dependent friction force and degenerate viscosity.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条