Global weak solutions to a quantum kinetic-fluid model with large initial data

被引:1
作者
Li, Yue [1 ]
Sun, Baoyan [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic-fluid model; Quantum Bohm potential; Nonlinear friction force; Density-dependent viscosity; Weak solutions; NAVIER-STOKES EQUATIONS; ASYMPTOTIC ANALYSIS; VLASOV EQUATIONS; EULER; SEDIMENTATION; EXISTENCE; SYSTEM;
D O I
10.1016/j.nonrwa.2022.103822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a quantum kinetic-fluid model in one-dimensional torus. This model consists of the Vlasov-Fokker-Planck equation coupled with the compressible quantum Navier-Stokes equations via a nonlinear friction force depends on the density of the fluid. The quantum fluid with degenerate viscosity is assumed to be isentropic (adiabatic coefficient gamma > 1). We establish the global weak solutions to this model with arbitrary large initial data. This is the first result on existence of solutions to kinetic-fluid models with density-dependent friction force and degenerate viscosity.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条
[1]   Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions [J].
Baranger, C ;
Desvillettes, L .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2006, 3 (01) :1-26
[2]  
Baranger C., 2005, ESAIM Proc, P41, DOI DOI 10.1051/PROC:2005004
[3]  
Berres S., 2004, Computing and Visualization in Science, V6, P67, DOI 10.1007/s00791-003-0110-3
[4]   Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression [J].
Berres, S ;
Bürger, R ;
Karlsen, KH ;
Tory, EM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :41-80
[5]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[6]   On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids [J].
Bresch, Didier ;
Desjardins, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01) :57-90
[7]   On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models [J].
Bresch, Didier ;
Desjardins, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (04) :362-368
[8]   Derivation of viscous correction terms for the isothermal quantum Euler model [J].
Brull, S. ;
Mehats, F. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (03) :219-230
[9]  
Bürger R, 2000, Z ANGEW MATH MECH, V80, P79
[10]   GLOBAL BOUNDED WEAK ENTROPY SOLUTIONS TO THE EULER-VLASOV EQUATIONS IN FLUID-PARTICLE SYSTEM [J].
Cao, Wentao ;
Jiang, Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) :3958-3984