Global Existence and Asymptotic Behavior for a Reaction-Diffusion System with Unbounded Coefficients

被引:0
作者
Majdoub, Mohamed [1 ,2 ]
Tatar, Nasser-Eddine [3 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Math, POB 1982, Dammam, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Intelligent Mfg & Robot, Dept Math, Dhahran 31261, Saudi Arabia
关键词
Analytic semi-group; exponential decay; fractional operator; reaction-diffusion system; sectorial operator;
D O I
10.1007/s00009-023-02394-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a reaction-diffusion system which may serve as a model for a ferment catalytic reaction in chemistry. The model consists of a system of reaction-diffusion equations with unbounded time-dependent coefficients and different polynomial reaction terms. An exponential decay of the globally bounded solutions is proved. The key tool of the proofs are properties of analytic semigroups and some inequalities.
引用
收藏
页数:16
相关论文
共 22 条
[1]  
AMANN H, 1985, J REINE ANGEW MATH, V360, P47
[2]  
[Anonymous], 1990, Funkcial Ekvac
[3]   Global classical solutions to quadratic systems with mass control in arbitrary dimensions [J].
Fellner, Klemens ;
Morgan, Jeff ;
Bao Quoc Tang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (02) :281-307
[4]  
Henry D., 1981, Geometric Theory of Semilinear Parabolic Equations
[5]  
Hoshino H., 1996, DIFF INTEGLL EQS, V9, P761
[6]  
Hoshino H., 1994, FUNKC EKVACIOJ-SER I, V34, P475
[7]  
Kahane CS., 1983, CZECH MATH J, V26, P51
[8]   Infinitely many positive solutions for an iterative system of singular multipoint boundary value problems on time scales [J].
Khuddush, Mahammad ;
Prasad, K. Rajendra ;
Vidyasagar, K. V. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) :677-696
[9]  
Kirane M, 2001, Z ANAL ANWEND, V20, P347
[10]  
Kirane M., 2000, ARCH MATH-BRNO, V36, P1