LOWER BOUNDS FOR THE FIRST EIGENVALUE OF p-LAPLACIAN ON KAHLER MANIFOLDS

被引:1
|
作者
Wang, Kui [1 ]
Zhang, Shaoheng [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
关键词
Eigenvalue of p-Laplacian; modulus of continuity; Ka; hler manifolds; FUNDAMENTAL GAP ESTIMATE; CONVEX DOMAINS; SHARP ESTIMATE; CONTINUITY; MODULI; PROOF;
D O I
10.1090/proc/16369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study first nonzero eigenvalues for the p-Laplacian on Ka.hler manifolds. Our first result is a lower bound for the first nonzero closed (Neu-mann) eigenvalue of the p-Laplacian on compact Ka.hler manifolds in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature for p is an element of (1, 2]. Our second result is a sharp lower bound for the first Dirichlet eigenvalue of the p-Laplacian on compact Ka.hler manifolds with smooth boundary for p is an element of (1, infinity). Our results generalize corresponding results for the Laplace eigenvalues on Ka.hler manifolds proved by Li and Wang [Trans. Amer. Math. Soc. 374 (2021), pp. 8081-8099].
引用
收藏
页码:2503 / 2515
页数:13
相关论文
共 50 条