Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups

被引:0
作者
Ballester-Bolinches, A. [1 ,2 ]
Kamornikov, S. F. [3 ]
Perez-Calabuig, V. [2 ]
Yi, X. [4 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Peoples R China
[2] Univ Valencia, Dept Matemat, Dr Moliner,50, Burjassot 46100, Valencia, Spain
[3] Francisk Skorina State Gomel Univ, Gomel 246019, BELARUS
[4] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Finite group; P-subnormal subgroup; TI-subgroup; TRIVIAL INTERSECTION;
D O I
10.1007/s00009-024-02612-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be the set of all prime numbers. A subgroup H of a finite group G is said to be P-subnormal in G if there exists a chain of subgroups H=H-0 subset of H-1 subset of<middle dot><middle dot><middle dot>subset of Hn-1 subset of H-n=G such that eitherH(i-1)is normal inH(i)or|H-i:Hi-1|is a prime number for every i=1,2,...,n. A subgroup H of G is called a TI-subgroup if every pair of distinct conjugates of H has trivial intersection. The aim of this paper is to give a complete description of all finite groups in which every non-P-subnormal subgroup is a TI-subgroup
引用
收藏
页数:9
相关论文
共 10 条
[1]  
Ballester-Bolinches A., 2006, CLASSES FINITE GROUP
[2]   ON TRIVIAL INTERSECTION OF CYCLIC SYLOW SUBGROUPS [J].
BLAU, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (04) :572-576
[3]  
Doerk K., 1992, Finite Soluble Groups, DOI DOI 10.1515/9783110870138
[4]   Finite groups whose abelian subgroups are TI-subgroups [J].
Guo, Xiuyun ;
Li, Shirong ;
Flavell, Paul .
JOURNAL OF ALGEBRA, 2007, 307 (02) :565-569
[5]  
HUPPERT B., 1954, MATH Z, P409
[6]  
Robinson DJS., 1996, COURSE THEORY GROUPS, DOI DOI 10.1007/978-1-4419-8594-1
[7]   Invariant TI-subgroups and structure of finite groups [J].
Shao, Changguo ;
Beltran, Antonio .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (04)
[8]   Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup [J].
Shi, Jiangtao ;
Zhang, Cui .
ARCHIV DER MATHEMATIK, 2013, 101 (02) :101-104
[9]   ON A FINITE GROUP IN WHICH EVERY NON-ABELIAN SUBGROUP IS A TI-SUBGROUP [J].
Shi, Jiangtao ;
Zhang, Cui ;
Meng, Wei .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (03)
[10]   TRIVIAL INTERSECTION GROUPS [J].
WALLS, G .
ARCHIV DER MATHEMATIK, 1979, 32 (01) :1-4