Triphasic Ni2P-Ni12P5-Ru with Amorphous Interface Engineering Promoted by Co Nano-Surface for Efficient Water Splitting

被引:11
作者
Malhotra, Deepanshu [1 ]
Nguyen, Thanh Hai [1 ]
Tran, Duy Thanh [1 ]
Dinh, Van An [2 ]
Kim, Nam Hoon [1 ,3 ]
Lee, Joong Hee [1 ,3 ,4 ]
机构
[1] Jeonbuk Natl Univ, Dept Nano Convergence Engn, Jeonju 54896, Jeonbuk, South Korea
[2] Osaka Univ, Grad Sch Engn, Dept Precis Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan
[3] AHES Co, 445 Techno Valley Ro, Jeonbuk, Wanju Gun, South Korea
[4] Jeonbuk Natl Univ, Carbon Composite Res Ctr, Dept Polymer Nano Sci & Technol, Jeonju 54896, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
interfacial engineering; overall water electrolysis; synergistic catalytic effects; triphasic heterostructures; BIFUNCTIONAL ELECTROCATALYSTS; EVOLUTION REACTION; HYDROGEN; PERFORMANCE; NANOSHEETS; ARRAY; NI; ELECTROLYSIS; MODULATION; PHOSPHIDES;
D O I
10.1002/smll.202309122
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This research designs a triphasic Ni2P-Ni12P5-Ru heterostructure with amorphous interface engineering strongly coupled by a cobalt nano-surface (Co@NimPn-Ru) to form a hierarchical 3D interconnected architecture. The Co@NimPn-Ru material promotes unique reactivities toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. The material delivers an overpotential of 30 mV for HER at 10 mA cm(-2) and 320 mV for OER at 50 mA cm(-2) in freshwater. The electrolyzer cell derived from Co@NimPn-Ru-(+,Ru--) requires a small cell voltage of only 1.43 V in alkaline freshwater or 1.44 V in natural seawater to produce 10 mA cm(-2) at a working temperature of 80 degrees C, along with high performance retention after 76 h. The solar energy-powered electrolyzer system also shows a prospective solar-to-hydrogen conversion efficiency and sufficient durability, confirming its good potential for economic and sustainable hydrogen production. The results are ascribed to the synergistic effects by an exclusive combination of multi-phasic crystalline Ni2P, Ni12P5, and Ru clusters in presence of amorphous phosphate interface attached onto cobalt nano-surface, thereby producing rich exposed active sites with optimized free energy and multi open channels for rapid charge transfer and ion diffusion to promote the reaction kinetics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Engineering NiS/Ni2P Heterostructures for Efficient Electrocatalytic Water Splitting
    Xiao, Xin
    Huang, Dekang
    Fu, Xongqing
    Wen, Ming
    Jiang, Xingxing
    Lv, Xiaowei
    Li, Man
    Gao, Lin
    Liu, Shuangshuang
    Wang, Mingkui
    Zhao, Chuan
    Shen, Yan
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (05) : 4689 - 4696
  • [2] Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting
    Tian, Gaoqi
    Wei, Songrui
    Guo, Zhangtao
    Wu, Shiwei
    Chen, Zhongli
    Xu, Fuming
    Cao, Yang
    Liu, Zheng
    Wang, Jieqiong
    Ding, Lei
    Tu, Jinchun
    Zeng, Hao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 77 : 108 - 116
  • [3] Zn2+-triggered synthesis of Ni2P/Ni12P5 microflower arrays for efficient alkaline overall water splitting
    Zhao, Yong
    Huang, Jianfeng
    Li, Xiaoyi
    Cao, Liyun
    Li, Jinhan
    Chen, Qian
    Zhang, Yifei
    Kajiyoshi, Koji
    Feng, Liangliang
    MOLECULAR CATALYSIS, 2024, 553
  • [4] Synergistic modulation in a triphasic Ni5P4-Ni2P@Ni3S2 system manifests remarkable overall water splitting
    Pundir, Vikas
    Gaur, Ashish
    Kaur, Rajdeep
    Sharma, Jatin
    Kumar, Rajinder
    Bagchi, Vivek
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 651 : 579 - 588
  • [5] Triphasic Ni2P-Fe2P-CoP heterostructure interfaces for efficient overall water splitting powered by solar energy
    Chang, Kai
    Tran, Duy Thanh
    Wang, Jingqiang
    Dong, Kaixuan
    Prabhakaran, Sampath
    Kim, Do Hwan
    Kim, Nam Hoon
    Lee, Joong Hee
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 338
  • [6] Constructing Mo-Co2P/Ni12P5 heterostructures as highly efficient electrocatalysts for overall water splitting
    Ye, Ning
    Wang, Yisong
    Han, Lei
    Tao, Kai
    JOURNAL OF POWER SOURCES, 2025, 637
  • [7] Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production
    Zhang, Jingtao
    Zhang, Zhen
    Ji, Yongfei
    Yang, Jindong
    Fan, Ke
    Ma, Xinzhou
    Wang, Chao
    Shu, Riyang
    Chen, Ying
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 282
  • [8] Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting
    Wang, Kaili
    Huang, Wen
    Cao, Qiuhan
    Zhao, Yongjie
    Sun, Xiujuan
    Ding, Rui
    Lin, Weiwei
    Liu, Enhui
    Gao, Ping
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [9] Tailoring the electronic structure of Ni5P4/Ni2P catalyst by Co2P for efficient overall water electrolysis
    Liu, Haobo
    Zhang, Yuqi
    Ge, Riyue
    Cairney, Julie M.
    Zheng, Rongkun
    Khan, Aslam
    Li, Sean
    Liu, Bin
    Dai, Liming
    Li, Wenxian
    APPLIED ENERGY, 2023, 349
  • [10] Surface engineering of superhydrophilic Ni2P@NiFe LDH heterostructure toward efficient water splitting electrocatalysis
    Wang, Xuanbing
    Wang, Junli
    Liao, Jiang
    Wang, Li
    Li, Min
    Xu, Ruidong
    Yang, Linjing
    APPLIED SURFACE SCIENCE, 2022, 602