Robust Flux Reconstruction and a Posteriori Error Analysis for an Elliptic Problem with Discontinuous Coefficients

被引:1
作者
Capatina, Daniela [1 ,2 ]
Gouasmi, Aimene [1 ,2 ]
He, Cuiyu [3 ,4 ]
机构
[1] Univ Pau & Pays Adour, LMAP, IPRA, BP 1155, F-64013 Pau, France
[2] Univ Pau & Pays Adour, CNRS UMR 5142, IPRA, BP 1155, F-64013 Pau, France
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[4] Univ Georgia, Dept Math, 1023 DW Brooks Dr, Athens, GA 30605 USA
关键词
Conforming and nonconforming finite elements; Discontinuous coefficients; Flux recovery; A posteriori error estimation; Adaptive mesh refinement; FINITE-ELEMENT METHODS; GALERKIN METHOD; ESTIMATOR; APPROXIMATIONS; GUARANTEED; EQUATIONS; ORDER;
D O I
10.1007/s10915-023-02428-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we locally construct a conservative flux for finite element solutions of elliptic interface problems with discontinuous coefficients. Since the Discontinuous Galerkin method has built-in conservative flux, we consider in this paper the conforming finite element method and a special type of nonconforming method with arbitrary orders. We also perform our analysis based on Nitsche's method, which imposes the Dirichlet boundary condition weakly. The construction method is derived based on a mixed problem with one solution coinciding with the finite element solution and with the other solution being naturally used to obtain a conservative flux. We then apply the recovered flux to the a posteriori error estimation and prove the robust reliability and efficiency for conforming elements, under the assumption that the diffusion coefficient is quasi-monotone. Numerical experiments are provided to verify the theoretical results.
引用
收藏
页数:31
相关论文
共 36 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[3]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[4]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[5]   LOCAL FLUX RECONSTRUCTIONS FOR STANDARD FINITE ELEMENT METHODS ON TRIANGULAR MESHES [J].
Becker, Roland ;
Capatina, Daniela ;
Luce, Robert .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) :2684-2706
[6]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[7]   ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS [J].
Bonito, Andrea ;
Devore, Ronald A. ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) :3106-3134
[8]  
Braess D, 2008, MATH COMPUT, V77, P651, DOI 10.1090/S0025-5718-07-02080-7
[9]   Equilibrated residual error estimates are p-robust [J].
Braess, Dietrich ;
Pillwein, Veronika ;
Schoeberl, Joachim .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) :1189-1197
[10]   Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems [J].
Cai, Difeng ;
Cai, Zhiqiang ;
Zhang, Shun .
NUMERISCHE MATHEMATIK, 2020, 144 (01) :1-21