Low-Latency Federated Learning via Dynamic Model Partitioning for Healthcare IoT

被引:2
|
作者
He, Peng [1 ,2 ,3 ]
Lan, Chunhui [1 ,2 ,3 ]
Bashir, Ali Kashif [4 ]
Wu, Dapeng [1 ,2 ,3 ]
Wang, Ruyan [1 ,2 ,3 ]
Kharel, Rupak [5 ]
Yu, Keping [6 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Intelligent Connect Technol Key Lab Chongqing Educ, Adv Network, Chongqing, Chin, Myanmar
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Ubiquitous Sensing & Networking, Chongqing 400065, Peoples R China
[4] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, England
[5] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, England
[6] Hosei Univ, Grad Sch Sci & Engn, Tokyo 1848584, Japan
关键词
Federated learning; split learning; medical data privacy; Lyapunov optimization; PRIVACY;
D O I
10.1109/JBHI.2023.3298446
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is receiving much attention in the Healthcare Internet of Things (H-IoT) to support various instantaneous E-health services. Today, the deployment of FL suffers from several challenges, such as high training latency and data privacy leakage risks, especially for resource-constrained medical devices. In this article, we develop a three-layer FL architecture to decrease training latency by introducing split learning into FL. We formulate a long-term optimization problem to minimize the local model training latency while preserving the privacy of the original medical data in H-IoT. Specially, a Privacy-ware Model Partitioning Algorithm (PMPA) is proposed to solve the formulated problem based on the Lyapunov optimization theory. In PMPA, the local model is partitioned properly between a resource-constrained medical end device and an edge server, which meets privacy requirements and energy consumption constraints. The proposed PMPA is separated into two phases. In the first phase, a partition point set is obtained using Kullback-Leibler (KL) divergence to meet the privacy requirement. In the second phase, we employ the model partitioning function, derived through Lyapunov optimization, to select the partition point from the partition point set that that satisfies the energy consumption constraints. Simulation results show that compared with traditional FL, the proposed algorithm can significantly reduce the local training latency. Moreover, the proposed algorithm improves the efficiency of medical image classification while ensuring medical data security.
引用
收藏
页码:4684 / 4695
页数:12
相关论文
共 50 条
  • [11] Enhancing IoT Healthcare with Federated Learning and Variational Autoencoder
    Bhatti, Dost Muhammad Saqib
    Choi, Bong Jun
    SENSORS, 2024, 24 (11)
  • [12] Federated Learning with Dynamic Model Exchange
    Hilberger, Hannes
    Hanke, Sten
    Boedenler, Markus
    ELECTRONICS, 2022, 11 (10)
  • [13] QUIC and WebSocket for Secure and Low-Latency IoT Communications: an Experimental Analysis
    Pettorru, Giovanni
    Martalo, Marco
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 628 - 633
  • [14] Low-Latency Federated Learning and Blockchain for Edge Association in Digital Twin Empowered 6G Networks
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 5098 - 5107
  • [15] A blockchain based federated deep learning model for secured data transmission in healthcare Iot networks
    Ganapathy, G.
    Anand, Sujatha Jamuna
    Jayaprakash, M.
    Lakshmi, S.
    Priya, V. Banu
    Pandi V, Samuthira
    Measurement: Sensors, 2024, 33
  • [16] Low Latency Federated Learning over Wireless Edge Networks via Efficient Bandwidth Allocation
    Kushwaha, Deepali
    Redhu, Surender
    Hegde, Rajesh M.
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,
  • [17] Privacy-Preserving Federated Learning Model for Healthcare Data
    Ul Islam, Tanzir
    Ghasemi, Reza
    Mohammed, Noman
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 281 - 287
  • [18] UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment
    Fernando, Xavier
    Gupta, Abhishek
    SENSORS, 2024, 24 (24)
  • [19] Deep Federated Learning for IoT-based Decentralized Healthcare Systems
    Elayan, Haya
    Aloqaily, Moayad
    Guizani, Mohsen
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 105 - 109
  • [20] Federated Learning and Blockchain-Enabled Fog-IoT Platform for Wearables in Predictive Healthcare
    Baucas, Marc Jayson
    Spachos, Petros
    Plataniotis, Konstantinos N.
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (04) : 1732 - 1741