Normalized solutions to the Schrodinger systems with double critical growth and weakly attractive potentials

被引:0
作者
Long, Lei [1 ]
Feng, Xiaojing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger systems; weakly attractive potentials; normalized solutions; positive solutions; STANDING WAVES; ORBITAL STABILITY; GROUND-STATES; EXISTENCE; EQUATIONS; COMPACTNESS;
D O I
10.14232/ejqtde.2023.1.42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we look for solutions to the following critical Schrodinger system {-Delta u + (V-1 + lambda(1))u = vertical bar u vertical bar(2*-2)u + vertical bar u vertical bar(p1-2)u + beta r(1)vertical bar u vertical bar(r1-2)u vertical bar v vertical bar(r2) in R-N, -Delta v + (V-2 + lambda(2))v = vertical bar v vertical bar(2*-2)v + vertical bar v vertical bar(p2-2)v + beta r(2) vertical bar u vertical bar(r1) vertical bar v vertical bar(r2-2)v in R-N, having prescribed mass integral(RN) u(2) = a(1) > 0 and integral(RN) v(2) = a(2) > 0, where lambda(1), lambda(2) is an element of R will arise as Lagrange multipliers, N >= 3, 2* = 2N/(N-2) is the Sobolev critical exponent, r(1), r(2) > 1, p(1), p(2), r(1) + r(2) is an element of (2 + 4/N, 2*) and beta > 0 is a coupling constant. Under suitable conditions on the potentials V-1 and V-2, beta* > 0 exists such that the above Schrodinger system admits a positive radial normalized solution when beta >= beta*. The proof is based on comparison argument and minmax method.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 33 条
[1]  
Bagnato VS, 2015, ROM REP PHYS, V67, P5
[2]   Normalized solutions of mass supercritical Schrodinger equations with potential [J].
Bartsch, Thomas ;
Molle, Riccardo ;
Rizzi, Matteo ;
Verzini, Gianmaria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) :1729-1756
[3]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[4]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[5]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[6]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[7]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[8]  
Bellazzini J, 2007, ADV NONLINEAR STUD, V7, P439
[9]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[10]   Normalized solutions for nonlinear Schrodinger systems with linear couples [J].
Chen, Zhen ;
Zou, Wenming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)