Pioglitazone ameliorates cisplatin-induced testicular toxicity by attenuating oxidative stress and inflammation via TLR4/MyD88/NF-?B signaling pathway

被引:11
作者
Hussein, Shaimaa [1 ]
Kamel, Gellan Alaa Mohamed [2 ]
机构
[1] Jouf Univ, Coll Pharm, Dept Pharmacol, Sakaka, Saudi Arabia
[2] Al Azhar Univ, Fac Pharm Girls, Dept Pharmacol & Toxicol, Nasr City 11754, Cairo, Egypt
关键词
Cisplatin; Pioglitazone; Testicular toxicity; Oxidative stress; Inflammation; PPAR-GAMMA; UP-REGULATION; RAT TESTIS; DAMAGE; ANTIOXIDANT; INHIBITION; APOPTOSIS; KIDNEY; INJURY; ACTIVATION;
D O I
10.1016/j.jtemb.2023.127287
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Cisplatin (CIS) is a chemotherapeutic agent widely used to cure several cancers. It exerts detrimental cellular effects that restrain its clinical application as an antineoplastic agent, as testicular damage. Pioglitazone (PIO), a peroxisome proliferator-activated receptor-gamma (PPAR-& gamma;) agonist, is used to treat type-2 diabetes mellitus. PIO has been reported to exert anti-inflammatory and antioxidant effects in different tissues. The present study aimed to investigate the effect of PIO in a rat model of cisplatin-induced testicular toxicity and address the possible role of the Toll-like receptors (TLR4) / myeloid differentiation factor 88 (MyD88) / nuclear factor-kappa B (NF-kB) signal pathway.Methods: Rats received a single dose of cisplatin (7 mg/kg, IP) on the first day and PIO (10 mg/kg, P.O.) for 7 days. At the end of the treatment period, rats were killed. Testicular weights, histopathological alterations, and serum testosterone levels were determined. Moreover, tissue samples were collected for the estimation of oxidative stress parameters, inflammatory markers, and the determination of TLR4 /MyD88/NF-kB signaling.Results: Concurrent PIO administration with CIS markedly improved testicular weights, histopathological alteration, and serum testosterone level changes. Moreover, Concurrent PIO administration abrogated oxidative stress status and inflammatory markers caused by CIS administration. Furthermore, PIO inhibited the expression levels of TLR4, MyD88, and NF-& kappa;Bp65, proteins that are activated by CIS administration.Conclusion: These findings suggested that PIO can protect against cisplatin-induced testicular toxicity in rats through inhibition of the TLR4 /MyD88/NF-kB signal pathway.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Proanthocyanidins: A novel approach to Henoch-Schonlein purpura through balancing immunity and arresting oxidative stress via TLR4/MyD88/NF-κB signaling pathway (Review)
    Xie, Yuxin
    Deng, Qiyan
    Guo, Menglu
    Li, Xiaolong
    Xian, Deihai
    Zhong, Jianqiao
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2023, 25 (06)
  • [22] Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway
    Ma, Xu
    Yan, Lei
    Zhu, Qing
    Shao, Fengmin
    PLOS ONE, 2017, 12 (02):
  • [23] Emodin Attenuates Ozone-Induced Lung Injury Via TLR4/MYD88/NF-κB Signaling Pathways
    Dan Zeng
    Wei Xie
    Yang Xiang
    Meiling Tan
    Xiaoqun Qin
    Pharmaceutical Chemistry Journal, 2023, 57 : 957 - 964
  • [24] Afzelechin alleviates deltamethrin induced hepatic dysfunction via regulating TLR4/MyD88, HMGB1/RAGE and NF-κB pathway
    Alzahrani, Fuad M.
    Alzahrani, Khalid J.
    Alsharif, Khalaf F.
    Hayat, Muhammad Faisal
    Al-Emam, Ahmed
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2025, 497
  • [25] Saikosaponin A mitigates the progression of Parkinson's disease via attenuating microglial neuroinflammation through TLR4/MyD88/NF-κB pathway
    Liu, X. -L.
    Fan, L.
    Yue, B. -H.
    Lou, Z.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2023, 27 (15) : 6956 - 6971
  • [26] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Liucheng Wu
    Lili Du
    Qianqian Ju
    Zhiheng Chen
    Yu Ma
    Ting Bai
    Guiqing Ji
    Yu Wu
    Zhaoguo Liu
    Yixiang Shao
    Xiaoqing Peng
    Inflammation, 2021, 44 : 633 - 644
  • [27] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Wu, Liucheng
    Du, Lili
    Ju, Qianqian
    Chen, Zhiheng
    Ma, Yu
    Bai, Ting
    Ji, Guiqing
    Wu, Yu
    Liu, Zhaoguo
    Shao, Yixiang
    Peng, Xiaoqing
    INFLAMMATION, 2021, 44 (02) : 633 - 644
  • [28] Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice
    Yao, Yusheng
    Lin, Daoyi
    Chen, Yuzhi
    Liu, Linwei
    Wu, Yushang
    Zheng, Xiaochun
    INFLAMMATION RESEARCH, 2023, 72 (06) : 1161 - 1173
  • [29] Emodin Attenuates Ozone-Induced Lung Injury Via TLR4/MYD88/NF-κB Signaling Pathways
    Zeng, Dan
    Xie, Wei
    Xiang, Yang
    Tan, Meiling
    Qin, Xiaoqun
    PHARMACEUTICAL CHEMISTRY JOURNAL, 2023, 57 (07) : 957 - 964
  • [30] Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway
    Chang, Jing
    Wang, Lin
    Zhang, Minna
    Lai, Zengjiao
    GENES & GENOMICS, 2021, 43 (08) : 847 - 855