The Neumann problem for the fractional Laplacian: regularity up to the boundary

被引:0
作者
Audrito, Alessandro [1 ]
Felipe-Navarro, Juan-Carlos [2 ]
Ros-Oton, Xavier [3 ,4 ,5 ]
机构
[1] Dept Math DISMA, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Univ Complutense Madrid, Dept Anal Matematico & Matemat Aplicada, Pl Ciencias 2, Madrid 28040, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Univ Barcelona, Dept Matematiques & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
[5] Ctr Recerca Matemat, Barcelona, Spain
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; MU-TRANSMISSION; DOMAINS; INEQUALITIES; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity up to the boundary of solutions to the Neumann problem for the fractional Laplacian. We prove that if u is a weak solution of.A/su D f in and Nsu D 0 in c, then u is C. up to the boundary for some. > 0. Moreover, in case s > 1 2, we show that u 2 C2s 1C../. To prove these results we need, among other things, a delicate Moser iteration on the boundary with some logarithmic corrections. Our methods allow us to treat as well the Neumann problem for the regional fractional Laplacian, and we establish the same boundary regularity result. Prior to our results, the interior regularity for these Neumann problems was well understood, but near the boundary even the continuity of solutions was open.
引用
收藏
页码:1155 / 1222
页数:68
相关论文
共 43 条
[1]   A remark on nonlocal Neumann conditions for the fractional Laplacian [J].
Abatangelo, Nicola .
ARCHIV DER MATHEMATIK, 2020, 114 (06) :699-708
[2]   Obstacle problems for integro-differential operators: Higher regularity of free boundaries [J].
Abatangelo, Nicola ;
Ros-Oton, Xavier .
ADVANCES IN MATHEMATICS, 2020, 360
[3]   Fractional elliptic problem in exterior domains with nonlocal Neumann condition [J].
Alves, Claudianor O. ;
Torres Ledesma, Cesar E. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195 (195)
[4]   THE DIRICHLET PROBLEM FOR NONLOCAL ELLIPTIC OPERATORS WITH C0,α EXTERIOR DATA [J].
Audrito, Alessandro ;
Ros-Oton, Xavier .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (10) :4455-4470
[5]   On the Dirichlet problem for second-order elliptic integro-differential equations [J].
Barles, G. ;
Chasseigne, E. ;
Imbert, C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :213-246
[6]   ON NEUMANN TYPE PROBLEMS FOR NONLOCAL EQUATIONS SET IN A HALF SPACE [J].
Barles, Guy ;
Chasseigne, Emmanuel ;
Georgelin, Christine ;
Jakobsen, Espen R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) :4873-4917
[7]   On Neumann and oblique derivatives boundary conditions for nonlocal elliptic equations [J].
Barles, Guy ;
Georgelin, Christine ;
Jakobsen, Espen R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1368-1394
[8]   Censored stable processes [J].
Bogdan, K ;
Burdzy, K ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (01) :89-152
[9]   Estimates and structure of α-harmonic functions [J].
Bogdan, Krzysztof ;
Kulczycki, Tadeusz ;
Kwasnicki, Mateusz .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) :345-381
[10]   Inequalities of John-Nirenberg type in doubling spaces [J].
Buckley, SM .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1) :215-240