HYBRID MAPPINGS ON MODULAR VECTOR SPACES AND FIXED POINTS

被引:0
作者
Latif, Abdul [1 ]
Postolache, Mihai [2 ,3 ,4 ]
Alansari, Monairah Omar [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] North Minzu Univ, Hlth Big Data Res Inst, 750021, Bucharest 050711, Romania
[3] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl M, Bucharest 050711, Romania
[4] Univ Politehn Bucuresti, Dept Math & Informat, Bucharest 060042, Romania
关键词
Modular vector space; iterative process; hybrid mapping; PSEUDOMONOTONE VARIATIONAL-INEQUALITIES; ITERATION SCHEME; NONLINEAR MAPPINGS; CONVERGENCE; ALGORITHM; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of nonlinear mappings on modular vector spaces, called ?-hybrid and thought as the modular version of the hybrid mappings established by Takahashi in [J. Nonlinear Convex Anal., 2010, 11, 79-88]. We provide some examples which clarify the relationship to other notable classes of nonlinear operators and establish some useful properties of these mappings. Also, we give sufficient conditions for the existence of fixed points for the new class of mappings. In this respect, we use a recent iterative process fitted to the new context; please, see Thakur et al. [Filomat, 2016, 30(10), 2711-2720]. Lastly, we provide sufficient conditions for the resulting iterative sequence to converge to a fixed point of ?-hybrid mappings.
引用
收藏
页码:955 / 966
页数:12
相关论文
共 37 条
  • [1] Fixed point theorems in modular vector spaces
    Abdou, Afrah A. N.
    Khamsi, Mohamed A.
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4046 - 4057
  • [2] Generalized suzuki-type mappings in modular vector spaces
    Bejenaru, Andreea
    Postolache, Mihai
    [J]. OPTIMIZATION, 2020, 69 (09) : 2177 - 2198
  • [3] On Suzuki Mappings in Modular Spaces
    Bejenaru, Andreea
    Postolache, Mihai
    [J]. SYMMETRY-BASEL, 2019, 11 (03):
  • [4] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces
    Bin Dehaish, Buthinah A.
    Latif, Abdul
    Bakodah, Huda O.
    Qin, Xiaolong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [5] A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS
    Ceng, L. C.
    Petrusel, A.
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2020, 21 (01): : 93 - 108
  • [6] Ceng L. C., 2021, COMMUN OPTIM THEORY, V2021, P4
  • [7] Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process
    Cho, Sun Young
    Kang, Shin Min
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 224 - 228
  • [8] On the Cauchy problem for a class of differential inclusions with applications
    Cubiotti, Paolo
    Yao, Jen-Chih
    [J]. APPLICABLE ANALYSIS, 2020, 99 (14) : 2543 - 2554
  • [9] Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators
    Dadashi, Vahid
    Postolache, Mihai
    [J]. ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) : 89 - 99
  • [10] Dinh N., 2022, J APPL NUMER OPTIM, V13, P3