PERCEPTFLOW: REAL-TIME ULTRAFAST DOPPLER IMAGE ENHANCEMENT USING DEEP CONVOLUTIONAL NEURAL NETWORK AND PERCEPTUAL LOSS

被引:1
|
作者
Blons, Matthieu [1 ,2 ]
Deffieux, Thomas [1 ,2 ]
Osmanski, Bruno -Felix [3 ]
Tanter, Mickael [1 ,2 ]
Berthon, Beatrice [1 ,2 ]
机构
[1] PSL Univ, Phys Med Paris, INSERM U1273, ESPCI Paris, Paris, France
[2] CNRS 8063, Paris, France
[3] Iconeus, Paris, France
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2023年 / 49卷 / 01期
关键词
Doppler imaging; Deep learning; Convolutional neural network; Perceptual loss; Image enhancement;
D O I
10.1016/j.ultrasmedbio.2022.08.016
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrafast ultrasound is an emerging imaging modality derived from standard medical ultrasound. It allows for a high spatial resolution of 100 mm and a temporal resolution in the millisecond range with techniques such as ultrafast Doppler imaging. Ultrafast Doppler imaging has become a priceless tool for neuroscience, especially for visualizing functional vascular structures and navigating the brain in real time. Yet, the quality of a Doppler image strongly depends on experimental conditions and is easily subject to artifacts and deterioration, especially with transcranial imaging, which often comes at the cost of higher noise and lower sensitivity to small blood vessels. A common solution to better visualize brain vasculature is either accumulating more information, integrating the image over several seconds or using standard filter-based enhancement techniques, which often over-smooth the image, thus failing both to preserve sharp details and to improve our perception of the vasculature. In this study we propose combining the standard Doppler accumulation process with a real-time enhancement strategy, based on deep-learning techniques, using perceptual loss (PerceptFlow). With our perceptual approach, we bypass the need for long integration times to enhance Doppler images. We applied and evaluated our proposed method on transcranial Doppler images of mouse brains, outperforming state-of-the-art filters. We found that, in comparison to standard filters such as the Gaussian filter (GF) and block-matching and 3-D filtering (BM3D), PerceptFlow was capable of reducing background noise with a significant increase in contrast and contrast-to-noise ratio, as well as better preserving details without compromising spatial resolution. (c) 2022 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
引用
收藏
页码:225 / 236
页数:12
相关论文
共 50 条
  • [21] Loss factor analysis in real-time structural health monitoring using a convolutional neural network
    Nguyen, Thanh Q.
    Vu, Tu B.
    Shafiabady, Niusha
    Nguyen, Thuy T.
    Nguyen, Phuoc T.
    ARCHIVE OF APPLIED MECHANICS, 2025, 95 (01)
  • [22] Real-time MRI lungs images revealing using Hybrid feedforward Deep Neural Network and Convolutional Neural Network
    Karthick, M.
    Samuel, Dinesh Jackson
    Prakash, B.
    Sathyaprakash, P.
    Daruvuri, Nandhini
    Ali, Mohammed Hasan
    Aiswarya, R. S.
    INTELLIGENT DATA ANALYSIS, 2023, 27 : S95 - S114
  • [23] Real-time CVSA decals recognition system using deep convolutional neural network architectures
    Yepez, Juan
    Castro-Zunti, Riel
    Choi, Younhee
    Ko, Seok-Bum
    IET INTELLIGENT TRANSPORT SYSTEMS, 2021, 15 (11) : 1359 - 1371
  • [24] The analysis of Iris image acquisition and real-time detection system using convolutional neural network
    Yanru Liu
    Jiali Xu
    Austin Lin Yee
    The Journal of Supercomputing, 2024, 80 (4) : 4500 - 4532
  • [25] Real-Time Pain Detection Using Deep Convolutional Neural Network for Facial Expression and Motion
    Pikulkaew, Kornprom
    Boonchieng, Waraporn
    Boonchieng, Ekkarat
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 2, 2023, 448 : 341 - 349
  • [26] The analysis of Iris image acquisition and real-time detection system using convolutional neural network
    Liu, Yanru
    Xu, Jiali
    Yee, Austin Lin
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 4500 - 4532
  • [27] The IoT-based real-time image processing for animal recognition and classification using deep convolutional neural network (DCNN)
    Surya, T.
    Selvi, S. Chitra
    Selvaperumal, S.
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 95
  • [28] Real-Time Object Recognition Algorithm Based on Deep Convolutional Neural Network
    Yang, Lihong
    Wang, Liewei
    Wu, Shuo
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 331 - 335
  • [29] Real-time Traffic Sign Recognition System with Deep Convolutional Neural Network
    Jung, Seokwoo
    Lee, Unghui
    Jung, Jiwon
    Shim, David Hyunchul
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 31 - 34
  • [30] A Real-Time Convolutional Neural Network Based Speech Enhancement for Hearing Impaired Listeners Using Smartphone
    Bhat, Gautam S.
    Shankar, Nikhil
    Reddy, Chandan K. A.
    Panahi, Issa M. S.
    IEEE ACCESS, 2019, 7 : 78421 - 78433