Unraveling the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO

被引:35
作者
Chen, Wei [1 ]
Shi, Jianqiao [1 ]
Xie, Chao [1 ,2 ]
Zhou, Wang [3 ]
Xu, Leitao [1 ]
Li, Yingying [1 ]
Wu, Yandong [1 ]
Wu, Binbin [1 ]
Huang, Yu-Cheng [4 ,5 ]
Zhou, Bo [1 ]
Yang, Ming [1 ]
Liu, Jilei [3 ]
Dong, Chung-Li [4 ,5 ]
Wang, Tehua [1 ]
Zou, Yuqin [1 ,6 ]
Wang, Shuangyin [1 ,6 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Adv Catalyt Engn Res Ctr,Minist Educ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[2] Hunan Normal Univ, Coll Chem & Chem Engn, Changsha 410081, Peoples R China
[3] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[4] Tamkang Univ, Res Ctr X ray Sci, New Taipei, Taiwan
[5] Tamkang Univ, Dept Phys, New Taipei, Taiwan
[6] Hunan Univ, Shenzhen Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
nucleophile oxidation reaction; alcohol electrooxidation; organic electrosynthesis; nickel-based electrocatalysts; C-C bond cleavage; NICKEL-OXIDE; OXIDATION; EVOLUTION; ELECTROSYNTHESIS; ELECTRODES; GOLD; CATALYSTS; HYDRATION; KINETICS; ETHYLENE;
D O I
10.1093/nsr/nwad099
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work unravels the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO, and elaborates the synergy between the electrochemical and non-electrochemical steps for the alcohol electrooxidation on NiO. Aqueous organic electrosynthesis such as nucleophile oxidation reaction (NOR) is an economical and green approach. However, its development has been hindered by the inadequate understanding of the synergy between the electrochemical and non-electrochemical steps. In this study, we unravel the NOR mechanism for the primary alcohol/vicinal diol electrooxidation on NiO. Thereinto, the electrochemical step is the generation of Ni3+-(OH)(ads), and the spontaneous reaction between Ni3+-(OH)(ads) and nucleophiles is an electrocatalyst-induced non-electrochemical step. We identify that two electrophilic oxygen-mediated mechanisms (EOMs), EOM involving hydrogen atom transfer (HAT) and EOM involving C-C bond cleavage, play pivotal roles in the electrooxidation of primary alcohol to carboxylic acid and the electrooxidation of vicinal diol to carboxylic acid and formic acid, respectively. Based on these findings, we establish a unified NOR mechanism for alcohol electrooxidation and deepen the understanding of the synergy between the electrochemical and non-electrochemical steps during NOR, which can guide the sustainable electrochemical synthesis of organic chemicals.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Ethylene Glycol Electrooxidation on Smooth and Nanostructured Pd Electrodes in Alkaline Media
    Bambagioni, V.
    Bevilacqua, M.
    Bianchini, C.
    Filippi, J.
    Marchionni, A.
    Vizza, F.
    Wang, L. Q.
    Shen, P. K.
    [J]. FUEL CELLS, 2010, 10 (04) : 582 - 590
  • [2] Electrocatalytic Oxidation of Methanol, Ethanol, and Glycerol on Ni(OH)2 Nanoparticles Encapsulated with Poly[Ni(salen)] Film
    Bott-Neto, Jose L.
    Martins, Thiago S.
    Machado, Sergio A. S.
    Ticianelli, Edson A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (34) : 30810 - 30818
  • [3] Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications
    Bredar, Alexandria R. C.
    Chown, Amanda L.
    Burton, Andricus R.
    Farnum, Byron H.
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 66 - 98
  • [4] Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode
    Chen, AC
    Lipkowski, J
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04): : 682 - 691
  • [5] Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions
    Chen, Chen
    Zhu, Xiaorong
    Wen, Xiaojian
    Zhou, Yangyang
    Zhou, Ling
    Li, Hao
    Tao, Li
    Li, Qiling
    Du, Shiqian
    Liu, Tingting
    Yan, Dafeng
    Xie, Chao
    Zou, Yuqin
    Wang, Yanyong
    Chen, Ru
    Huo, Jia
    Li, Yafei
    Cheng, Jun
    Su, Hui
    Zhao, Xu
    Cheng, Weiren
    Liu, Qinghua
    Lin, Hongzhen
    Luo, Jun
    Chen, Jun
    Dong, Mingdong
    Cheng, Kai
    Li, Conggang
    Wang, Shuangyin
    [J]. NATURE CHEMISTRY, 2020, 12 (08) : 717 - 724
  • [6] Unveiling the Electrooxidation of Urea: Intramolecular Coupling of the N-N Bond
    Chen, Wei
    Xu, Leitao
    Zhu, Xiaorong
    Huang, Yu-Cheng
    Zhou, Wang
    Wang, Dongdong
    Zhou, Yangyang
    Du, Shiqian
    Li, Qiling
    Xie, Chao
    Tao, Li
    Dong, Chung-Li
    Liu, Jilei
    Wang, Yanyong
    Chen, Ru
    Su, Hui
    Chen, Chen
    Zou, Yuqin
    Li, Yafei
    Liu, Qinghua
    Wang, Shuangyin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) : 7297 - 7307
  • [7] Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation
    Chen, Wei
    Xie, Chao
    Wang, Yanyong
    Zou, Yuqin
    Dong, Chung-Li
    Huang, Yu-Cheng
    Xiao, Zhaohui
    Wei, Zengxi
    Du, Shiqian
    Chen, Chen
    Zhou, Bo
    Ma, Jianmin
    Wang, Shuangyin
    [J]. CHEM, 2020, 6 (11): : 2974 - 2993
  • [8] A Continuum of Proton-Coupled Electron Transfer Reactivity
    Darcy, Julia W.
    Koronkiewicz, Brian
    Parada, Giovanny A.
    Mayer, James M.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (10) : 2391 - 2399
  • [9] Redox catalysis in organic electrosynthesis: basic principles and recent developments
    Francke, Robert
    Little, R. Daniel
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (08) : 2492 - 2521
  • [10] Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/nchem.2695, 10.1038/NCHEM.2695]