Fekete-Szego Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials

被引:3
作者
Riaz, Sadia [1 ]
Shaba, Timilehin Gideon [2 ]
Xin, Qin [3 ]
Tchier, Fairouz [4 ]
Khan, Bilal [5 ,6 ]
Malik, Sarfraz Nawaz [7 ]
机构
[1] Natl Univ Modern Languages, Dept Math, Islamabad 44000, Pakistan
[2] Landmark Univ, Dept Math, Omu Aran 251103, Nigeria
[3] Univ Faroe Isl, Fac Sci & Technol, Vestarabryggja 15,FO 100, Torshavn, Faroe Islands, Denmark
[4] King Saud Univ, Coll Sci, Math Dept, POB 22452, Riyadh 11495, Saudi Arabia
[5] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[6] East China Normal Univ, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[7] COMSATS Univ Islamabad, Dept Math, Wah Campus, Wah Cantt 47040, Pakistan
关键词
analytic function; bi-univalent function; Fekete-Szego problem; second Hankel determinant; Euler polynomials; SUBCLASSES;
D O I
10.3390/fractalfract7040295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some well-known authors have extensively used orthogonal polynomials in the framework of geometric function theory. We are motivated by the previous research that has been conducted and, in this study, we solve the Fekete-Szego problem as well as give bound estimates for the coefficients and an upper bound estimate for the second Hankel determinant for functions in the class Gs(v,s) of analytical and bi-univalent functions, implicating the Euler polynomials.
引用
收藏
页数:17
相关论文
共 27 条
[1]   Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions [J].
Al-shbeil, Isra ;
Gong, Jianhua ;
Khan, Shahid ;
Khan, Nazar ;
Khan, Ajmal ;
Khan, Mohammad Faisal ;
Goswami, Anjali .
FRACTAL AND FRACTIONAL, 2022, 6 (11)
[2]  
Andrews G.E., 1986, Conference Series in Mathematics, VVolume 66
[3]  
[Anonymous], 2002, Quantum Calculus
[4]  
Duren P. L., 1983, Grundlehren der mathematischen Wissenschaften, V259
[5]   Certain subclasses of analytic functions associated with the generalized hypergeometric function [J].
Dziok, J ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (01) :7-18
[6]  
Fekete M., 1933, Journal of London Mathematical Society, Vs1-8, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[7]  
Fine N. J., 1988, Basic hypergeometric series and applications
[8]   Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials [J].
Hu, Qiuxia ;
Shaba, Timilehin Gideon ;
Younis, Jihad ;
Khan, Bilal ;
Mashwani, Wali Khan ;
Caglar, Murat .
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01) :501-520
[9]   Third Hankel Determinant for the Logarithmic Coefficients of Starlike Functions Associated with Sine Function [J].
Khan, Bilal ;
Aldawish, Ibtisam ;
Araci, Serkan ;
Khan, Muhammad Ghaffar .
FRACTAL AND FRACTIONAL, 2022, 6 (05)
[10]   Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions [J].
Khan, Bilal ;
Liu, Zhi-Guo ;
Srivastava, H. M. ;
Araci, Serkan ;
Khan, Nazar ;
Ahmad, Qazi Zahoor .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)