High-Dimensional Data Bootstrap

被引:16
作者
Chernozhukov, Victor [1 ,2 ]
Chetverikov, Denis [3 ]
Kato, Kengo [4 ]
Koike, Yuta [5 ,6 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] MIT, Ctr Stat & Data Sci, Cambridge, MA 02139 USA
[3] Univ Calif Los Angeles, Dept Econ, Los Angeles, CA 90024 USA
[4] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY USA
[5] Univ Tokyo, Math & Informat Ctr, Tokyo, Japan
[6] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
基金
美国国家科学基金会; 日本科学技术振兴机构;
关键词
empirical bootstrap; high-dimensional central limit theorem; multiple testing; multiplier bootstrap; simultaneous inference; MULTIVARIATE NORMAL APPROXIMATION; POST-SELECTION INFERENCE; CENTRAL LIMIT-THEOREMS; GAUSSIAN APPROXIMATION; CONFIDENCE-REGIONS; U-STATISTICS; HYPOTHESIS TESTS; STEINS METHOD; CONVERGENCE; PARAMETERS;
D O I
10.1146/annurev-statistics-040120-022239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article reviews recent progress in high-dimensional bootstrap. We first review high-dimensional central limit theorems for distributions of sample mean vectors over the rectangles, bootstrap consistency results in high dimensions, and key techniques used to establish those results. We then review selected applications of high-dimensional bootstrap: construction of simultaneous confidence sets for high-dimensional vector parameters, multiple hypothesis testing via step-down, postselection inference, intersection bounds for partially identified parameters, and inference on best policies in policy evaluation. Finally, we also comment on a couple of future research directions.
引用
收藏
页码:427 / 449
页数:23
相关论文
共 97 条
[1]  
[Anonymous], 2001, HDB ECONOMETRICS
[2]   ON THE CONVERGENCE RATE IN THE INFINITE-DIMENSIONAL CENTRAL-LIMIT-THEOREM FOR PROBABILITIES OF HITTING PARALLELEPIPEDS [J].
ASRIEV, AV ;
ROTAR, VI .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1986, 30 (04) :691-701
[3]   POLICY LEARNING WITH OBSERVATIONAL DATA [J].
Athey, Susan ;
Wager, Stefan .
ECONOMETRICA, 2021, 89 (01) :133-161
[4]  
Bach P, 2018, Arxiv, DOI arXiv:1809.04951
[5]   THE REVERSE ISOPERIMETRIC PROBLEM FOR GAUSSIAN MEASURE [J].
BALL, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (04) :411-420
[6]   Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems [J].
Belloni, A. ;
Chernozhukov, V. ;
Kato, K. .
BIOMETRIKA, 2015, 102 (01) :77-94
[7]  
Belloni A, 2018, Arxiv, DOI [arXiv:1806.01888, 10.48550/ARXIV.1806.01888]
[8]   UNIFORMLY VALID POST-REGULARIZATION CONFIDENCE REGIONS FOR MANY FUNCTIONAL PARAMETERS IN Z-ESTIMATION FRAMEWORK [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Chetverikov, Denis ;
Wei, Ying .
ANNALS OF STATISTICS, 2018, 46 (6B) :3643-3675
[9]   Inference on Treatment Effects after Selection among High-Dimensional ControlsaEuro [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Hansen, Christian .
REVIEW OF ECONOMIC STUDIES, 2014, 81 (02) :608-650
[10]   Least squares after model selection in high-dimensional sparse models [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
BERNOULLI, 2013, 19 (02) :521-547