Knight's paths towards Catalan numbers

被引:1
作者
Baril, Jean-Luc [1 ]
Ramirez, Jose L. [2 ]
机构
[1] Univ Bourgogne Franche Comte, LIB, BP 47 870, F-21078 Dijon, France
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
Catalan number; Zigzag knight?s path; Generating function; DYCK PATHS;
D O I
10.1016/j.disc.2023.113372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide enumerating results for partial knight's paths of a given size. We prove algebraically that zigzag knight's paths of a given size ending on the x-axis are enumerated by the generalized Catalan numbers, and we give a constructive bijection with peakless Motzkin paths of a given length. After enumerating partial knight's paths of a given length, we prove that zigzag knight's paths of a given length ending on the x-axis are counted by the Catalan numbers. Finally, we give a constructive bijection with Dyck paths of a given length.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 24 条
  • [1] Ayyer A, 2007, ELECTRON J COMB, V14
  • [2] Generating functions for generating trees
    Banderier, C
    Bousquet-Mélou, M
    Denise, A
    Flajolet, P
    Gardy, D
    Gouyou-Beauchamps, D
    [J]. DISCRETE MATHEMATICS, 2002, 246 (1-3) : 29 - 55
  • [3] Banderier C., 2019, Lattice Path Combinatorics and Applications, P78, DOI [10.1007/978-3-030-11102-1_6, DOI 10.1007/978-3-030-11102-1_6]
  • [4] Banderier C, 2017, DISCRETE MATH THEOR, V19
  • [5] Nondecreasing Dyck paths and q-Fibonacci numbers
    Barcucci, E
    DelLungo, A
    Fezzi, S
    Pinzani, R
    [J]. DISCRETE MATHEMATICS, 1997, 170 (1-3) : 211 - 217
  • [6] Bijections between directed animals, multisets and Grand-Dyck paths
    Baril, Jean-Luc
    Bevan, David
    Kirgizov, Sergey
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (02)
  • [7] Equivalence classes of Dyck paths modulo some statistics
    Baril, Jean-Luc
    Petrossian, Armen
    [J]. DISCRETE MATHEMATICS, 2015, 338 (04) : 655 - 660
  • [8] Bettinelli J., 2016, J CLIN PSYCHOPHARM, V77, pB77a
  • [9] Bousquet-Melou M., 2008, SEMIN LOTHAR COMB, V57, pB57d
  • [10] Peakless Motzkin paths with marked level steps at fixed height
    Cameron, Naiomi
    Sullivan, Everett
    [J]. DISCRETE MATHEMATICS, 2021, 344 (01)