The indecomposable objects in the center of Deligne's category Rep St

被引:3
作者
Flake, Johannes [1 ]
Harman, Nate [2 ]
Laugwitz, Robert [3 ,4 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
[2] Inst Adv Study, Sch Math, Princeton, NJ USA
[3] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham, England
[4] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
关键词
REPRESENTATION-THEORY; COMPLEX RANK; FIELD; RING;
D O I
10.1112/plms.12509
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the indecomposable objects in the monoidal center of Deligne's interpolation category Rep S-t by viewing Rep S-t as a model-theoretic limit in rank and characteristic. We further prove that the center of Rep S-t is semisimple if and only if t is not a non-negative integer. In addition, we identify the associated graded Grothendieck ring of this monoidal center with that of the graded sum of the centers of representation categories of finite symmetric groups with an induction product.
引用
收藏
页码:1134 / 1181
页数:48
相关论文
共 43 条
  • [1] Aguiar M, 2010, Monoidal Functors, Species and Hopf Algebras, V29
  • [2] [Anonymous], 2010, Lecture Notes in Mathematics
  • [3] Bakalov B., 2001, Lectures on tensor categories and modular functors
  • [4] Deligne categories and representations of the infinite symmetric group
    Barter, Daniel
    Entova-Aizenbud, Inna
    Heidersdorf, Thorsten
    [J]. ADVANCES IN MATHEMATICS, 2019, 346 : 1 - 47
  • [5] Benson D., 2020, NEW INCOMPRESSIBLE S
  • [6] Blanchet C., 2020, MODULAR CATEGORIES T
  • [7] Bryant RM., 1972, B LOND MATH SOC, V4, P133, DOI DOI 10.1112/BLMS/4.2.133
  • [8] Representations of wreath products of algebras
    Chuang, J
    Tan, KM
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2003, 135 : 395 - 411
  • [9] On Deligne's category (Rep) under barab (Sd)
    Comes, Jonathan
    Ostrik, Victor
    [J]. ALGEBRA & NUMBER THEORY, 2014, 8 (02) : 473 - 496
  • [10] On blocks of Deligne's category Rep(St)
    Comes, Jonathan
    Ostrik, Victor
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1331 - 1377