K-Means Clustering-Based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition in Human-Robot Interaction

被引:62
作者
Chen, Luefeng [1 ,2 ,3 ]
Wang, Kuanlin [1 ,2 ,3 ]
Li, Min [1 ,2 ,3 ]
Wu, Min [1 ,2 ,3 ]
Pedrycz, Witold [4 ,5 ,6 ]
Hirota, Kaoru [7 ]
机构
[1] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
[3] Minist Educ, Engn Res Ctr Intelligent Technol Geoexplorat, Wuhan 430074, Peoples R China
[4] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
[5] King Abgudulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[6] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[7] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan
基金
中国国家自然科学基金;
关键词
Feature fusion; K-means clustering; Kernel canonical correlation analysis (KCCA); multimodal emotion recognition; REGRESSION; FEATURES; PATTERN;
D O I
10.1109/TIE.2022.3150097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, K-means clustering-based Kernel canonical correlation analysis algorithm is proposed for multimodal emotion recognition in human-robot interaction (HRI). The multimodal features (gray pixels; time and frequency domain) extracted from facial expression and speech are fused based on Kernel canonical correlation analysis. K-means clustering is used to select features from multiple modalities and reduce dimensionality. The proposed approach can improve the heterogenicity among different modalities and make multiple modalities complementary to promote multimodal emotion recognition. Experiments on two datasets, namely SAVEE and eNTER-FACE'05, are conducted to evaluate the accuracy of the proposed method. The results show that the proposed method produces good recognition rates that are higher than the ones produced by the methods without K-means clustering; more specifically, they are 2.77% higher in SAVEE and 4.7% higher in eNTERFACE'05.
引用
收藏
页码:1016 / 1024
页数:9
相关论文
共 32 条
[1]   Facial Expression Recognition Using Local Transitional Pattern on Gabor Filtered Facial Images [J].
Ahsan, Tanveer ;
Jabid, Taskeed ;
Chong, Ui-Pil .
IETE TECHNICAL REVIEW, 2013, 30 (01) :47-52
[2]  
[Anonymous], 2010, J. Comput.
[3]   K-Means Clustering-based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition [J].
Chen, Luefeng ;
Wang, Kuanlin ;
Wu, Min ;
Pedrycz, Witold ;
Hirota, Kaoru .
IFAC PAPERSONLINE, 2020, 53 (02) :10250-10254
[4]   Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human Robot Interaction [J].
Chen, Luefeng ;
Zhou, Mengtian ;
Wu, Min ;
She, Jinhua ;
Liu, Zhentao ;
Dong, Fangyan ;
Hirota, Kaoru .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (05) :2524-2538
[5]   Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction [J].
Chen, Luefeng ;
Zhou, Mengtian ;
Su, Wanjuan ;
Wu, Min ;
She, Jinhua ;
Hirota, Kaoru .
INFORMATION SCIENCES, 2018, 428 :49-61
[6]   An Effective Subsuperpixel-Based Approach for Background Subtraction [J].
Chen, Yu-Qiu ;
Sun, Zhan-Li ;
Lam, Kin-Man .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (01) :601-609
[7]   A Just-In-Time-Learning-Aided Canonical Correlation Analysis Method for Multimode Process Monitoring and Fault Detection [J].
Chen, Zhiwen ;
Liu, Chang ;
Ding, Steven X. ;
Peng, Tao ;
Yang, Chunhua ;
Gui, Weihua ;
Shardt, Yuri A. W. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (06) :5259-5270
[8]   A Cumulative Canonical Correlation Analysis-Based Sensor Precision Degradation Detection Method [J].
Chen, Zhiwen ;
Yang, Chunhua ;
Peng, Tao ;
Dan, Hanbing ;
Li, Changgeng ;
Gui, Weihua .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (08) :6321-6330
[9]   A Review and Meta-Analysis of Multimodal Affect Detection Systems [J].
D'Mello, Sidney K. ;
Kory, Jacqueline .
ACM COMPUTING SURVEYS, 2015, 47 (03)
[10]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227