Curcumin/Carrier Coprecipitation by Supercritical Antisolvent Route

被引:1
|
作者
Mottola, Stefania [1 ,2 ]
De Marco, Iolanda [1 ,2 ]
机构
[1] Univ Salerno, Dept Ind Engn, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
[2] Univ Salerno, Res Ctr Biomat BIONAM, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
关键词
inclusion complexes; coprecipitated microparticles; beta-cyclodextrin; SAS precipitation; fast release; supercritical CO2; BREAST-CANCER; MICROPARTICLES; COMPLEXES; CYCLODEXTRINS; CO2;
D O I
10.3390/pharmaceutics16030352
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In this work, polyvinylpyrrolidone (PVP)- and beta-cyclodextrin (beta-CD)-based composite powders containing curcumin (CURC) were obtained through the supercritical antisolvent (SAS) technique. Pressure, total concentration of CURC/carrier in dimethylsulfoxide, and CURC/carrier ratio effects on the morphology and size of the precipitated powders were investigated. Using PVP as the carrier, spherical particles with a mean diameter of 1.72 mu m were obtained at 12.0 MPa, 20 mg/mL, and a CURC/PVP molar ratio equal to 1/2 mol/mol; using beta-CD as the carrier, the optimal operating conditions were 9.0 MPa and 200 mg/mL; well-defined micrometric particles with mean diameters equal to 2.98 and 3.69 mu m were obtained at molar ratios of 1/2 and 1/1 mol/mol, respectively. FT-IR spectra of CURC/ beta-CD inclusion complexes and coprecipitated CURC/PVP powders revealed the presence of some peaks of the active compounds. The stoichiometry of the complexes evaluated through the Job method revealed that beta-CD formed inclusion complexes with CURC at a molar ratio equal to 1/1. Dissolution profiles revealed that in comparison with the curve of the pure ingredient, the SAS-processed powders obtained using both PVP and beta-CD have an improved release rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Micronization of levofloxacin by supercritical antisolvent precipitation
    E. V. Kudryashova
    I. M. Deygen
    K. V. Sukhoverkov
    L. Yu. Filatova
    N. L. Klyachko
    A. M. Vorobei
    O. I. Pokrovskiy
    K. B. Ustinovich
    O. O. Parenago
    E. N. Antonov
    A. G. Dunaev
    L. I. Krotova
    V. K. Popov
    A. M. Egorov
    Russian Journal of Physical Chemistry B, 2016, 10 : 1201 - 1210
  • [42] Supercritical antisolvent micronization of minocycline hydrochloride
    Cardoso, M. A. Tavares
    Monteiro, G. A.
    Cardoso, J. P.
    Prazeres, T. J. V.
    Figueiredo, J. M. F.
    Martinho, J. M. G.
    Cabral, J. M. S.
    Palavra, A. M. F.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2008, 44 (02): : 238 - 244
  • [43] Formation of Chitin Nanofibers by Supercritical Antisolvent
    Louvier-Hernandez, Jose F.
    Luna-Barcenas, Gabriel
    Thakur, Ranjit
    Gupta, Ram B.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2005, 1 (01) : 109 - 114
  • [44] Green tea encapsulation by means of high pressure antisolvent coprecipitation
    Sosa, M. V.
    Rodriguez-Rojo, S.
    Mattea, F.
    Cismondi, M.
    Cocero, M. J.
    JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 56 (03): : 304 - 311
  • [45] Dissolution rate enhancement of the anti-inflammatory drug diflunisal by coprecipitation with a biocompatible polymer using carbon dioxide as a supercritical fluid antisolvent
    Zahran, Fouad
    Cabanas, Albertina
    Cheda, Jose A. R.
    Renuncio, Juan A. R.
    Pando, Concepcion
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 88 : 56 - 65
  • [46] High-loaded Ni-based catalysts obtained via supercritical antisolvent coprecipitation in transfer hydrogenation of anisole: Influence of the support
    Philippov, Alexey A.
    Nesterov, Nikolai N.
    Pakharukova, Vera P.
    Martyanov, Oleg N.
    APPLIED CATALYSIS A-GENERAL, 2022, 643
  • [47] Supercritical Antisolvent Process for Pharmaceutical Applications: A Review
    Franco, Paola
    De Marco, Iolanda
    PROCESSES, 2020, 8 (08)
  • [48] Supercritical antisolvent synthesis of fine griseofulvin particles
    Bakhbakhi, Yousef
    Asif, Mohammad
    Chafidz, Achmad
    Ajbar, AbdelHamid
    ADVANCED POWDER TECHNOLOGY, 2013, 24 (06) : 1006 - 1012
  • [49] Mechanisms controlling supercritical antisolvent precipitate morphology
    Reverchon, Ernesto
    De Marco, Iolanda
    CHEMICAL ENGINEERING JOURNAL, 2011, 169 (1-3) : 358 - 370
  • [50] Rifampicin microparticles production by supercritical antisolvent precipitation
    Reverchon, E
    De Marco, I
    Della Porta, G
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2002, 243 (1-2) : 83 - 91