Non-homogeneous fully nonlinear contracting flows of convex hypersurfaces

被引:0
|
作者
Guan, Pengfei [1 ]
Huang, Jiuzhou [2 ]
Liu, Jiawei [3 ]
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 0B9, Canada
[2] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
[3] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
关键词
contracting curvature flow; convex hypersurfaces; CURVATURE; MOTION;
D O I
10.1515/ans-2022-0077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general class of non-homogeneous contracting flows of convex hypersurfaces in R n + 1, and prove the existence and regularity of the flow before extincting to a point in finite time.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 50 条
  • [31] Boundary integral analysis for non-homogeneous, incompressible Stokes flows
    L. J. Gray
    Jas Jakowski
    M. N. J. Moore
    Wenjing Ye
    Advances in Computational Mathematics, 2019, 45 : 1729 - 1734
  • [32] Nonlinear steady temperature fields in non-homogeneous materials
    Dai, Yao
    Sun, Qi
    Tan, Wei
    Sun, Chang-Qing
    PRICM 6: SIXTH PACIFIC RIM INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS AND PROCESSING, PTS 1-3, 2007, 561-565 : 1957 - +
  • [33] Linear problems of optimization of non-homogeneous flows in the generalized network
    Pilipchuk, L. A.
    Pesheva, Y. H.
    Vishnevetskaya, T. S.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'11): PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE, 2011, 1410
  • [34] Boundary integral analysis for non-homogeneous, incompressible Stokes flows
    Gray, L. J.
    Jakowski, Jas
    Moore, M. N. J.
    Ye, Wenjing
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) : 1729 - 1734
  • [35] Study of a nonlinear Kirchhoff equation with non-homogeneous material
    Figueiredo, Giovany M.
    Morales-Rodrigo, Cristian
    Santos Junior, Joao R.
    Suarez, Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) : 597 - 608
  • [36] HOMOGENEOUS AND NON-HOMOGENEOUS DUALITY
    PASHENKOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (05) : 95 - 121
  • [37] The breaking of a non-homogeneous fiber embedded in an infinite non-homogeneous medium
    Vrbik, J
    Singh, BM
    Rokne, J
    Dhaliwal, RS
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (02): : 212 - 223
  • [38] The breaking of a non-homogeneous fiber embedded in an infinite non-homogeneous medium
    J. Vrbik
    B. M. Singh
    J. Rokne
    R. S. Dhaliwal
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 212 - 223
  • [39] Modeling approaches for strongly non-homogeneous two-phase flows
    Morel, C.
    NUCLEAR ENGINEERING AND DESIGN, 2007, 237 (11) : 1107 - 1127
  • [40] Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited
    Degond, Pierre
    Lozinski, Alexei
    Owens, Robert G.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (9-10) : 509 - 518