Bidirectional feature learning network for RGB-D salient object detection

被引:1
作者
Niu, Ye
Zhou, Sanping [1 ]
Dong, Yonghao
Wang, Le
Wang, Jinjun
Zheng, Nanning
机构
[1] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
RGB-D salient object detection; Bidirectional feature fusion; Dual consistency loss; IMAGE; FUSION;
D O I
10.1016/j.patcog.2024.110304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D salient object detection aims to perform the pixel-wise localization of salient objects from both RGB and depth images, whose challenge mainly comes from how to learn complementary features from each modality. Existing works often use increasingly large models for performance enhancement, which need large memory and time consumption in practice. In this paper, we propose a simple yet effective Bidirectional Feature Learning Network (BFLNet) for RGB-D salient object detection under limited memory and time conditions. To achieve accurate performance with lightweight backbone networks, an effective Bidirectional Feature Fusion (BFF) module is designed to merge features from both RGB and depth streams, in which the crossmodal fusions and cross-scale fusions are jointly conducted to fuse the immediate features in multiple scales and multiple modals. What is more, a simple Dual Consistency Loss (DCL) function is designed to prompt cross -modal fusion by keeping the consistency between cross -modal target predictions. Extensive experiments on four benchmark datasets demonstrate that our method has achieved the state-of-the-art performance with high efficiency in RGB-D salient object detection. Code will be available at https://github.com/nightskynostar/BFLNet.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Compensated Attention Feature Fusion and Hierarchical Multiplication Decoder Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    REMOTE SENSING, 2023, 15 (09)
  • [42] EGA-Net: Edge feature enhancement and global information attention network for RGB-D salient object detection
    Wei, Longsheng
    Zong, Guanyu
    INFORMATION SCIENCES, 2023, 626 : 223 - 248
  • [43] ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection
    Yi, Youpeng
    Xu, Jiawei
    Zhang, Xiaoqin
    Park, Seop Hyeong
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (08) : 5327 - 5337
  • [44] Adaptive Fusion for RGB-D Salient Object Detection
    Wang, Ningning
    Gong, Xiaojin
    IEEE ACCESS, 2019, 7 : 55277 - 55284
  • [45] Few-shot learning-based RGB-D salient object detection: A case study
    Fu, Keren
    He, Jing
    Yang, Xiao
    NEUROCOMPUTING, 2022, 512 : 142 - 152
  • [46] SPSN: Superpixel Prototype Sampling Network for RGB-D Salient Object Detection
    Lee, Minhyeok
    Park, Chaewon
    Cho, Suhwan
    Lee, Sangyoun
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 630 - 647
  • [47] AFLNet: Adversarial focal loss network for RGB-D salient object detection
    Zhao, Xiaoli
    Chen, Zheng
    Hwang, Jenq-Neng
    Shang, Xiwu
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 94
  • [48] Perceptual localization and focus refinement network for RGB-D salient object detection
    Han, Jinyu
    Wang, Mengyin
    Wu, Weiyi
    Jia, Xu
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [49] DMGNet: Depth mask guiding network for RGB-D salient object detection
    Tang, Yinggan
    Li, Mengyao
    NEURAL NETWORKS, 2024, 180
  • [50] ICNet: Information Conversion Network for RGB-D Based Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 4873 - 4884