Bioconversion of α-Chitin by a Lytic Polysaccharide Monooxygenase OsLPMO10A Coupled with Chitinases and the Synergistic Mechanism Analysis

被引:5
作者
Zhao, Hongjun [1 ]
Su, Haipeng [1 ]
Sun, Jianan [1 ,2 ,3 ]
Dong, Hao [1 ,2 ,3 ]
Mao, Xiangzhao [1 ,2 ,3 ,4 ]
机构
[1] Ocean Univ China, Coll Food Sci & Engn, State Key Lab Marine Food Proc & Safety Control, Qingdao 266404, Peoples R China
[2] Qingdao Key Lab Food Biotechnol, Qingdao 266404, Peoples R China
[3] China Natl Light Ind, Key Lab Biol Proc Aquat Prod, Qingdao 266404, Peoples R China
[4] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Drugs & Bioprod, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
lytic polysaccharidemonooxygenase; alpha-chitin; chitinase; decrystallization; synergistic mechanism; SERRATIA-MARCESCENS BJL200; FUNCTIONAL-ANALYSIS; PURIFICATION;
D O I
10.1021/acs.jafc.3c08688
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The whole enzymatic conversion of chitin is a green and promising alternative to current strategies, which are based on lytic polysaccharide monooxygenases (LPMOs) and chitinases. However, the lack of LPMOs with high activity toward alpha-chitin limits the efficient bioconversion of alpha-chitin. Herein, we characterized a high chitin-active LPMO from Oceanobacillus sp. J11TS1 (OsLPMO10A), which could promote the decrystallization of the alpha-chitin surface. Furthermore, when coupled with OsLPMO10A, the conversion rate of alpha-chitin to N-acetyl chitobiose [(GlcNAc)(2)] by three chitinases (Serratia marcescens, ChiA, -B, and -C) reached 30.86%, which was 2.03-folds that without the addition of OsLPMO10A. Moreover, the results of synergistic reactions indicated that OsLPMO10A and chitinases promoted the degradation of alpha-chitin each other mainly on the surface. To the best of our knowledge, this study achieved the highest yield of N-acetyl chitooligosaccharides (N-acetyl COSs) among reported LPMOs-driven bioconversion systems, which could be regarded as a promising candidate for alpha-chitin bioconversion.
引用
收藏
页码:7256 / 7265
页数:10
相关论文
共 40 条
  • [1] Chitin and chitosan derived from crustacean waste valorization streams can support food systems and the UN Sustainable Development Goals
    Amiri, Hamid
    Aghbashlo, Mortaza
    Sharma, Minaxi
    Gaffey, James
    Manning, Louise
    Basri, Seyed Masoud Moosavi
    Kennedy, John F.
    Gupta, Vijai Kumar
    Tabatabaei, Meisam
    [J]. NATURE FOOD, 2022, 3 (10): : 822 - 828
  • [2] Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases
    Book, Adam J.
    Yennamalli, Ragothaman M.
    Takasuka, Taichi E.
    Currie, Cameron R.
    Phillips, George N., Jr.
    Fox, Brian G.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] A fast and sensitive activity assay for lytic polysaccharide monooxygenase
    Breslmayr, Erik
    Hanzek, Marija
    Hanrahan, Aoife
    Leitner, Christian
    Kittl, Roman
    Santek, Bozidar
    Oostenbrink, Chris
    Ludwig, Roland
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [5] CHARACTERIZATION OF A CHITINASE GENE (CHIA) FROM SERRATIA-MARCESCENS BJL200 AND ONE-STEP PURIFICATION OF THE GENE-PRODUCT
    BRURBERG, MB
    EIJSINK, VGH
    NES, IF
    [J]. FEMS MICROBIOLOGY LETTERS, 1994, 124 (03) : 399 - 404
  • [6] CHITINASE-B FROM SERRATIA-MARCESCENS-BJL200 IS EXPORTED TO THE PERIPLASM WITHOUT PROCESSING
    BRURBERG, MB
    EIJSINK, VGH
    HAANDRIKMAN, AJ
    VENEMA, G
    NES, IF
    [J]. MICROBIOLOGY-SGM, 1995, 141 : 123 - 131
  • [7] Spin coated chitin films for biosensors and its analysis are dependent on chitin-surface interactions
    Casteleijn, Marco G.
    Richardson, Dominique
    Parkkila, Petteri
    Granqvist, Niko
    Urtti, Arto
    Viitala, Tapani
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2018, 539 : 261 - 272
  • [8] Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency
    Eibinger, Manuel
    Ganner, Thomas
    Bubner, Patricia
    Rosker, Stephanie
    Kracher, Daniel
    Haltrich, Dietmar
    Ludwig, Roland
    Plank, Harald
    Nidetzky, Bernd
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (52) : 35929 - 35938
  • [9] On the impact of carbohydrate-binding modules (CBMs) in lytic polysaccharide monooxygenases (LPMOs)
    Forsberg, Zarah
    Courtade, Gaston
    [J]. ESSAYS IN BIOCHEMISTRY, 2023, 67 (03) : 561 - 574
  • [10] Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus
    Forsberg, Zarah
    Nelson, Cassandra E.
    Dalhus, Bjorn
    Mekasha, Sophanit
    Loose, Jennifer S. M.
    Crouch, Lucy I.
    Rohr, Asmund K.
    Gardner, Jeffrey G.
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (14) : 7300 - 7312