3D genome organization and its study in livestock breeding

被引:2
作者
Cheng, Jie [1 ]
Cao, Xiukai [2 ]
Wang, Shengxuan [1 ]
Zhang, Jiaqiang [1 ]
Yue, Binglin [1 ]
Zhang, Xiaoyan [1 ]
Huang, Yongzhen [1 ]
Lan, Xianyong [1 ]
Ren, Gang [1 ]
Chen, Hong [1 ,3 ]
机构
[1] Northwest A&F Univ, Coll Anim Sci & Technol, Key Lab Anim Genet Breeding & Reprod Shaanxi Prov, Yangling 712100, Peoples R China
[2] Yangzhou Univ, Joint Int Res Lab Agr & Agriprod Safety, Minist Educ China, Yangzhou 225009, Peoples R China
[3] Xinjiang Agr Univ, Coll Anim Sci, Urumqi 830052, Peoples R China
基金
中国国家自然科学基金;
关键词
3D genome organization; 3D genomic methodology; regulatory mechanisms; muscle development; livestock breeding; RANGE CHROMATIN INTERACTIONS; HI-C; CHROMOSOME CONFORMATION; SINGLE-CELL; ENHANCER RNAS; TRANSCRIPTION FACTORS; PROXIMITY-LIGATION; GENE-REGULATION; COMPLEX TRAITS; DOMAINS;
D O I
10.1016/j.jia.2023.04.007
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Eukaryotic genomes are hierarchically packaged into cell nucleus, affecting gene regulation. The genome is organized into multiscale structural units, including chromosome territories, compartments, topologically associating domains (TADs), and DNA loops. The identification of these hierarchical structures has benefited from the development of experimental approaches, such as 3C-based methods (Hi-C, ChIA-PET, etc.), imaging tools (2D-FISH, 3D-FISH, Cryo-FISH, etc.) and ligation-free methods (GAM, SPRITE, etc.). In recent two decades, numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms, such as regulating enhancer activity and promoter-enhancer interactions. However, there are relatively few studies about the 3D genome in livestock species. Therefore, studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits. In this review, we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies, drawing inspiration to explore the 3D genomics of livestock species. We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding.
引用
收藏
页码:39 / 58
页数:20
相关论文
共 190 条
  • [1] The role of regulatory variation in complex traits and disease
    Albert, Frank W.
    Kruglyak, Leonid
    [J]. NATURE REVIEWS GENETICS, 2015, 16 (04) : 197 - 212
  • [2] Chromosomal Dynamics at the Shh Locus: Limb Bud-Specific Differential Regulation of Competence and Active Transcription
    Amano, Takanori
    Sagai, Tomoko
    Tanabe, Hideyuki
    Mizushina, Yoichi
    Nakazawa, Hiromi
    Shiroishi, Toshihiko
    [J]. DEVELOPMENTAL CELL, 2009, 16 (01) : 47 - 57
  • [3] Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data
    Armstrong, Ellie E.
    Taylor, Ryan W.
    Miller, Danny E.
    Kaelin, Christopher B.
    Barsh, Gregory S.
    Hadly, Elizabeth A.
    Petrov, Dmitri
    [J]. BMC BIOLOGY, 2020, 18 (01)
  • [4] Wild emmer genome architecture and diversity elucidate wheat evolution and domestication
    Avni, Raz
    Nave, Moran
    Barad, Omer
    Baruch, Kobi
    Twardziok, Sven O.
    Gundlach, Heidrun
    Hale, Iago
    Mascher, Martin
    Spannagl, Manuel
    Wiebe, Krystalee
    Jordan, Katherine W.
    Golan, Guy
    Deek, Jasline
    Ben-Zvi, Batsheva
    Ben-Zvi, Gil
    Himmelbach, Axel
    MacLachlan, Ron P.
    Sharpe, Andrew G.
    Fritz, Allan
    Ben-David, Roi
    Budak, Hikmet
    Fahima, Tzion
    Korol, Abraham
    Faris, Justin D.
    Hernandez, Alvaro
    Mikel, Mark A.
    Levy, Avraham A.
    Steffenson, Brian
    Maccaferri, Marco
    Tuberosa, Roberto
    Cattivelli, Luigi
    Faccioli, Primetta
    Ceriotti, Aldo
    Kashkush, Khalil
    Pourkheirandish, Mohammad
    Komatsuda, Takao
    Eilam, Tamar
    Sela, Hanan
    Sharon, Amir
    Ohad, Nir
    Chamovitz, Daniel A.
    Mayer, Klaus F. X.
    Stein, Nils
    Ronen, Gil
    Peleg, Zvi
    Pozniak, Curtis J.
    Akhunov, Eduard D.
    Distelfeld, Assaf
    [J]. SCIENCE, 2017, 357 (6346) : 93 - 96
  • [5] Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells
    Barbieri, Mariano
    Xie, Sheila Q.
    Triglia, Elena Torlai
    Chiariello, Andrea M.
    Bianco, Simona
    de Santiago, Ines
    Branco, Miguel R.
    Rueda, David
    Nicodemi, Mario
    Pombo, Ana
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (06) : 515 - +
  • [6] A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus
    Barutcu, A. Rasim
    Maass, Philipp G.
    Lewandowski, Jordan P.
    Weiner, Catherine L.
    Rinn, John L.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [7] Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data
    Batra, Sanjit Singh
    Levy-Sakin, Michal
    Robinson, Jacqueline
    Guillory, Joseph
    Durinck, Steffen
    Vilgalys, Tauras P.
    Kwok, Pui-Yan
    Cox, Laura A.
    Seshagiri, Somasekar
    Song, Yun S.
    Wall, Jeffrey D.
    [J]. GIGASCIENCE, 2020, 9 (12):
  • [8] On the existence and functionality of topologically associating domains
    Beagan, Jonathan A.
    Phillips-Cremins, Jennifer E.
    [J]. NATURE GENETICS, 2020, 52 (01) : 8 - 16
  • [9] Complex multi-enhancer contacts captured by genome architecture mapping
    Beagrie, Robert A.
    Scialdone, Antonio
    Schueler, Markus
    Kraemer, Dorothee C. A.
    Chotalia, Mita
    Xie, Sheila Q.
    Barbieri, Mariano
    de Santiago, Ines
    Lavitas, Liron-Mark
    Branco, Miguel R.
    Fraser, James
    Dostie, Josee
    Game, Laurence
    Dillon, Niall
    Edwards, Paul A. W.
    Nicodemi, Mario
    Pombo, Ana
    [J]. NATURE, 2017, 543 (7646) : 519 - +
  • [10] Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation
    Belaghzal, Houda
    Dekker, Job
    Gibcus, Johan H.
    [J]. METHODS, 2017, 123 : 56 - 65