Fabricating carbon quantum dots of graphitic carbon nitride vis ultrasonic exfoliation for highly efficient H2O2 production

被引:21
|
作者
Wang, Yue [1 ,2 ]
Yang, Zhaojing [1 ]
Zhang, Chengxu [1 ]
Feng, Yuebin [3 ]
Shao, Haodong [1 ,2 ]
Chen, Jian [1 ]
Hu, Jue [1 ,2 ]
Zhang, Libo [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cle, Kunming 650093, Yunnan, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Peoples R China
关键词
Graphitic carbon nitride; Ultrasound; Two-electron oxygen reduction; Hydrogen peroxide preparation; NANOSHEETS; PHOTOCATALYSTS; PERFORMANCE; CHEMISTRY;
D O I
10.1016/j.ultsonch.2023.106582
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A promising and sustainable approach for producing hydrogen peroxide is the two-electron oxygen reduction reaction (2e- ORR), which uses very stable graphitic carbon nitride (g-C3N4). However, the catalytic performance of pristine g-C3N4 is still far from satisfactory. Here, we demonstrate for the first time the controlled fabrication of carbon quantum dots (CQDs)-modified graphitic carbon nitride carbon (g-C3N4/CQDs-X) by ultrasonic stripping for efficient 2e- ORR electrocatalysis. HRTEM, UV-vis, EPR and EIS analyses are in good consistent which prove the in-situ generation of CQDs. The effect of sonication time on the physical properties and ORR activity of g-C3N4 is discussed for the first time. The g-C3N4/CQDs-12 catalyst shows a selectivity of up to 95% at a potential of 0.35 V vs. RHE, which is much higher than that of the original g-C3N4 catalyst (88%). Additionally, the H2O2 yield is up to 1466.6 mmol g-1 in 12 h, which is twice as high as the original g-C3N4 catalyst. It is discovered that the addition of CQDs through ultrasonic improves the g-C3N4 catalyst's electrical conductivity and electron transfer capability in addition to its high specific surface area and distinctive porous structure, speeding up the reaction rate. This research offers a green method for enhancing g-C3N4 activity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Efficient Photocatalytic H2O2 Production Ability of a Novel Graphitic Carbon Nitride/Carbon Composites under Visible Light
    Liang, Huagen
    Wang, Anhu
    Cheng, Ruolin
    Tian, Xinlong
    Jing, Shengyu
    Tsiakaras, Panagiotis
    SMALL, 2023, 19 (48)
  • [2] Ultrafast Hole Transfer in Graphitic Carbon Nitride Imide Enabling Efficient H2O2 Photoproduction
    Hu, Qiushi
    Huang, Yuling
    Yu, Xuemeng
    Gong, Shaokuan
    Wen, Yifan
    Liu, Yong
    Li, Geng
    Zhang, Qiang
    Ye, Ruquan
    Chen, Xihan
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (36) : 42611 - 42621
  • [3] Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production
    Zhou, Liang
    Lei, Juying
    Wang, Fuchen
    Wang, Lingzhi
    Hoffmann, Michael R.
    Liu, Yongdi
    In, Su-Il
    Zhang, Jinlong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 288
  • [4] A Minireview: The Mechanism of H2O2 Photoproduction by Graphitic Carbon Nitride
    Sun, Lu
    Li, Pengfei
    Shen, Ziye
    Pang, Yamei
    Ma, Xiaobao
    Qu, Dan
    An, Li
    Sun, Zaicheng
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2023, 4 (11):
  • [5] Plasma-Tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H2O2 production
    Zheng, Yanmei
    Luo, Yi
    Ruan, Qiushi
    Yu, Jin
    Guo, Xinli
    Zhang, Weijie
    Xie, Hang
    Zhang, Zheng
    Zhao, Jianjie
    Huang, Ying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 75 - 85
  • [6] Thermal Exfoliation and Phosphorus Doping in Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Chen, Lu
    Zhang, Linzhu
    Xia, Yuzhou
    Huang, Renkun
    Liang, Ruowen
    Yan, Guiyang
    Wang, Xuxu
    MOLECULES, 2024, 29 (15):
  • [7] Synergistic effect of exfoliation and substitutional doping in graphitic carbon nitride for photocatalytic H2O2 production and H2 generation: a comparison and kinetic study
    Mishra, Bhagyashree Priyadarshini
    Acharya, Lopamudra
    Parida, Kulamani
    CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (05) : 1448 - 1458
  • [8] Graphitic Carbon Nitride Based Materials Towards Photoproduction of H2O2
    Vuong, Hoai-Thanh
    Bui, Dai-Phat
    Nguyen, Duc-Viet
    Pho Phuong, Ly
    Duc Minh, Phan Pham
    Do Dat, Tran
    Hieu, Nguyen Huu
    CHEMPHOTOCHEM, 2023, 7 (05)
  • [9] Exfoliation of graphitic carbon nitride and homogeneous loading of Cu2O catalyst
    Pan, Jing
    Wang, Hongxia
    Xu, Lina
    Zhang, Jingjia
    Zhao, Jingxiang
    SOLID STATE SCIENCES, 2022, 129
  • [10] Hollow Carbon Sphere-Modified Graphitic Carbon Nitride for Efficient Photocatalytic H2 Production
    Li, Jinghua
    Xiong, Lunqiao
    Luo, Bing
    Jing, Dengwei
    Cao, Jiamei
    Tang, Junwang
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (68) : 16879 - 16888