Improving Classification of Curved Chromosomes in Karyotyping using CNN-based Deformation

被引:0
|
作者
Nguyen, Quan A. [1 ]
Nguyen, Nhung T. C. [2 ]
Nguyen, Son H. H. [1 ]
Doan, Phuong T. K. [3 ]
Thinh, Nguyen H. [4 ]
Tran, Tung H. [5 ]
Luong, Anh T. L. [3 ]
Le, Ha V. [4 ,6 ]
Luu, Ha M. [4 ,6 ]
机构
[1] Vietnam Natl Univ, UET, Hanoi, Vietnam
[2] Bach Mai Hosp, Hematol & Blood Transfus Ctr, Hanoi, Vietnam
[3] Hanoi Med Univ, Dept Biol & Med Genet, Hanoi, Vietnam
[4] Vietnam Natl Univ, FET, UET, Hanoi, Vietnam
[5] Univ Sci & Technol Hanoi, ICT Lab, Hanoi, Vietnam
[6] Vietnam Natl Univ, UET, AVITECH, Hanoi, Vietnam
来源
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP | 2023年
关键词
Curved chromosome; Straightening; Spatial Transformer Network; Classification; Karyotyping; IDENTIFICATION;
D O I
10.1109/SSP53291.2023.10208061
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Chromosomal image analysis is an important method to diagnose chromosomal disorders. However, the image can be curved after cultivation, resulting in difficulty in chromosome recognition and analyzing the bands. While manual work of straightening the chromosomes requires an intensive labor, the computer-aided method can increase the performance as well as preserve the image details. In this paper, we investigate a method of straightening the curved chromosomes using Spatial Transformer Network (SPN) and to what extend the method affects the chromosome classification using a CNN-based method. The experiments were carried on a dataset of 28,106 chromosome images. The results show that SPN achieved compatible performance to manual method on the curved chromosomes with straight ratio of higher than 90%, yielding improvements of the classification accuracy to that of the original curved images from 3% to 5% on average. The source code and processed data are shared to support further studies.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 50 条
  • [1] CNN-based classification of phonocardiograms using fractal techniques
    Riccio, Daniel
    Brancati, Nadia
    Sannino, Giovanna
    Verde, Laura
    Frucci, Maria
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [2] IMPROVING CNN-BASED VISEME RECOGNITION USING SYNTHETIC DATA
    Mattos, Andrea Britto
    Borges Oliveira, Dario Augusto
    Morais, Edmilson da Silva
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [3] A Method for Improving CNN-Based Image Recognition Using DCGAN
    Fang, Wei
    Zhang, Feihong
    Sheng, Victor S.
    Ding, Yewen
    CMC-COMPUTERS MATERIALS & CONTINUA, 2018, 57 (01): : 167 - 178
  • [4] CNN-based InSAR Coherence Classification
    Mukherjee, Subhayan
    Zimmer, Aaron
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    2018 IEEE SENSORS, 2018, : 1612 - 1615
  • [5] Additive Attention for CNN-based Classification
    Li, Xuesheng
    Xu, Qiwei
    Chen, Xinlei
    Li, Chen
    2021 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2021), 2021, : 55 - 59
  • [6] CNN-Based UAV Detection and Classification Using Sensor Fusion
    Lee, Hunje
    Han, Sujeong
    Byeon, Jeong-Il
    Han, Seoulgyu
    Myung, Rangun
    Joung, Jingon
    Choi, Jihoon
    IEEE ACCESS, 2023, 11 : 68791 - 68808
  • [7] Improving Deep CNN-Based Radar Target Classification Performance a Denoise Filter
    Nguyen, Van-Tra
    Vu, Chi-Thanh
    Doan, Van-Sang
    JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, 2024, 24 (02): : 198 - 205
  • [8] CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
    Bilal, Muehenad
    Podishetti, Ranadheer
    Girish, Tangirala Sri
    Grossmann, Daniel
    Bregulla, Markus
    SENSORS, 2025, 25 (05)
  • [9] pcPromoter-CNN: A CNN-Based Prediction and Classification of Promoters
    Shujaat, Muhammad
    Wahab, Abdul
    Tayara, Hilal
    Chong, Kil To
    GENES, 2020, 11 (12) : 1 - 11
  • [10] Improving CNN-based solutions for emotion recognition using evolutionary algorithms
    Mohammadrezaei, Parsa
    Aminan, Mohammad
    Soltanian, Mohammad
    Borna, Keivan
    RESULTS IN APPLIED MATHEMATICS, 2023, 18