The regularity theory for the double obstacle problem for fully nonlinear operator

被引:0
|
作者
Lee, Ki-Ahm [1 ,2 ]
Park, Jinwan [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kongju Natl Univ, Dept Appl Math, Chungcheongnam do 32588, South Korea
基金
新加坡国家研究基金会;
关键词
Free boundary problem; Obstacle problem; Double obstacle problem; Fully nonlinear operator; FREE-BOUNDARY; NONTRANSVERSAL INTERSECTION; STABILITY;
D O I
10.1016/j.na.2023.113332
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence and uniqueness of W2,p (n < p < & INFIN;) solutions of a double obstacle problem. Moreover, we show the optimal regularity of the solution and the local C1 regularity of the free boundary under a thickness assumption at the free boundary point on the intersection of two free boundaries. In the study of the regularity of the free boundary, we deal with a general problem, the no-sign reduced double obstacle problem with an upper obstacle & psi;, F(D2u, x) = f & chi;& OHM;(u)& AND;{u<& psi;} + F(D2 & psi;, x)& chi;& OHM;(u)& AND;{u=& psi;}, u & LE; & psi;inB1,where & OHM;(u) = B1 \ ({u = 0} & AND; { backward difference u = 0}).& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条