The regularity theory for the double obstacle problem for fully nonlinear operator
被引:0
|
作者:
Lee, Ki-Ahm
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Lee, Ki-Ahm
[1
,2
]
论文数: 引用数:
h-index:
机构:
Park, Jinwan
[3
]
机构:
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Kongju Natl Univ, Dept Appl Math, Chungcheongnam do 32588, South Korea
In this paper, we prove the existence and uniqueness of W2,p (n < p < & INFIN;) solutions of a double obstacle problem. Moreover, we show the optimal regularity of the solution and the local C1 regularity of the free boundary under a thickness assumption at the free boundary point on the intersection of two free boundaries. In the study of the regularity of the free boundary, we deal with a general problem, the no-sign reduced double obstacle problem with an upper obstacle & psi;, F(D2u, x) = f & chi;& OHM;(u)& AND;{u<& psi;} + F(D2 & psi;, x)& chi;& OHM;(u)& AND;{u=& psi;}, u & LE; & psi;inB1,where & OHM;(u) = B1 \ ({u = 0} & AND; { backward difference u = 0}).& COPY; 2023 Elsevier Ltd. All rights reserved.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Korea Inst Adv Study, Sch Math, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Lee, Ki-Ahm
Park, Jinwan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Park, Jinwan
Shahgholian, Henrik
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, SwedenSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Korea Inst Adv Study, Seoul 02455, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Lee, Ki-Ahm
Park, Jinwan
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sinica, Inst Math, 6F Astron Math Bldg,1,Sec 4,Roosevelt Rd, Taipei 106319, TaiwanSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ,LMAM, Beijing 100875, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
Hu, Xi
Tang, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China