Geodesics in the space of relatively Kahler metrics

被引:1
作者
Hallam, Michael [1 ,2 ]
机构
[1] Aarhus Univ, Dept Math, Aarhus, Denmark
[2] Aarhus Univ, Dept Math, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2023年 / 108卷 / 03期
关键词
COMPLEX MONGE-AMPERE; K-ENERGY; STABILITY; CONNECTIONS; REGULARITY; FLOW;
D O I
10.1112/jlms.12775
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the geodesic equation for relatively Kahler metrics on fibrations and prove that any two such metrics with fibrewise constant scalar curvature are joined by a unique smooth geodesic. We then show convexity of the log-norm functional for this setting along geodesics, which yields simple proofs of Dervan and Sektnan's uniqueness result for optimal symplectic connections and a boundedness result for the log-norm functional. Next, we associate to a fibration degeneration a unique geodesic ray defined on a dense open subset. Calculating the limiting slope of the log-norm functional along a globally defined smooth geodesic ray, we prove that fibrations admitting optimal symplectic connections are polystable with respect to a large class of fibration degenerations that are smooth over the base. We give examples of such degenerations in the case of projectivised vector bundles and isotrivial fibrations.
引用
收藏
页码:1036 / 1081
页数:46
相关论文
共 46 条
  • [1] Einstein-Hermitian connections on polystable principal bundles over a compact Kahler manifold
    Anchouche, B
    Biswas, I
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (02) : 207 - 228
  • [2] REGULARITY OF WEAK MINIMIZERS OF THE K-ENERGY AND APPLICATIONS TO PROPERNESS AND K-STABILITY
    Berman, Robert J.
    Darvas, Tamas
    Lu, Chinh H.
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02): : 267 - 289
  • [3] CONVEXITY OF THE K-ENERGY ON THE SPACE OF KAHLER METRICS AND UNIQUENESS OF EXTREMAL METRICS
    Berman, Robert J.
    Berndtsson, Bo
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (04) : 1165 - 1196
  • [4] The Complex Monge-Ampere Equation in Kahler Geometry
    Blocki, Zbigniew
    [J]. PLURIPOTENTIAL THEORY, CETRARO, ITALY 2011, 2013, 2075 : 95 - 141
  • [5] Uniform K-stability and asymptotics of energy functionals in Kahler geometry
    Boucksom, Sebastien
    Hisamoto, Tomoyuki
    Jonsson, Mattias
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (09) : 2905 - 2944
  • [6] BRoNNLE T., 2011, PhD thesis
  • [7] The J-equation and the supercritical deformed Hermitian-Yang-Mills equation
    Chen, Gao
    [J]. INVENTIONES MATHEMATICAE, 2021, 225 (02) : 529 - 602
  • [8] Chen XX, 2000, INT MATH RES NOTICES, V2000, P607
  • [9] Chen XX, 2000, J DIFFER GEOM, V56, P189
  • [10] C1,1 regularity for degenerate complex Monge-Ampere equations and geodesic rays
    Chu, Jianchun
    Tosatti, Valentino
    Weinkove, Ben
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) : 292 - 312