Eu doping 8-MnO2 as cathode materials for high specific capacity aqueous zinc ion batteries

被引:17
|
作者
Han, Rong [1 ]
Pan, Yusong [1 ]
Du, Chao [1 ]
Xiang, Yanlei [1 ]
Wang, Yuanqing [1 ]
Zhu, Hongwu [1 ]
Yin, Chengjie [2 ]
机构
[1] Anhui Univ Sci & Technol, Sch Mat Sci & Engn, Huainan 232001, Anhui, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Chem Engn, Huainan 232001, Anhui, Peoples R China
关键词
Cathode material; Aqueous zinc ion battery; Electrochemical mechanism; Europium doping; PERFORMANCE; ELECTROLYTE; COMPOSITES; NANOSHEETS; INTERFACE; ANODE; MNO2;
D O I
10.1016/j.est.2023.110250
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous zinc ion batteries (AZIB) have become a research hotspot for energy storage systems (ESS) in recent years due to some advantages such as their low risk and low cost. However, the structural collapse during charging and discharging affects the reversibility of the battery, which is a very serious blow to manganese -based materials and will affect their subsequent development in batteries. Therefore, 8-MnO2 cathode materials doped by the rare earth element europium (Eu) were prepared by a simple hydrothermal method. Compared with 8-MnO2, Eu-doped MnO2 possessed a high specific capacity of 409 mA h g-1 at 0.2 A g-1. The initial specific capacity of Eu-doped MnO2 at 1 A g-1 was 200.23 mA h g-1 and the maximum discharge specific capacity of 254 mA h g-1 was reached at 128 cycles. The energy storage mechanism of the electrodes was investigated by ex -situ XRD and ex -situ XPS tests. It was found that Eu element doping to 8-MnO2 not only maintains the stability of the crystal structure during redox reaction, but also promotes the embedding reaction of H+/Zn2+. The combination of rare earth elements Eu and MnO2 is a new direction in the development path of aqueous zinc ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [2] MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries
    Zhang, Yanan
    Liu, Yanpeng
    Liu, Zhenhua
    Wu, Xiaogang
    Wen, Yuxiang
    Chen, Hangda
    Ni, Xia
    Liu, Guohan
    Huang, Juanjuan
    Peng, Shanglong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 64 : 23 - 32
  • [3] ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries
    Zhao, Wenyu
    Kong, Qingquan
    Wu, Xiaoqiang
    An, Xuguang
    Zhang, Jing
    Liu, Xiaonan
    Yao, Weitang
    APPLIED SURFACE SCIENCE, 2022, 605
  • [4] A high-capacity and long-lifespan SnO2@K-MnO2 cathode material for aqueous zinc-ion batteries
    Jin, Xiaoqing
    Qi, Yae
    Xia, Yongyao
    FRONTIERS OF MATERIALS SCIENCE, 2024, 18 (03)
  • [5] MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries
    Zhang, Aina
    Zhang, Xu
    Zhao, Hainan
    Ehrenberg, Helmut
    Chen, Gang
    Saadoune, Ismael
    Fu, Qiang
    Wei, Yingjin
    Wang, Yizhan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 723 - 730
  • [6] Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries
    Li, Yanli
    Yu, Dandan
    Lin, Sen
    Sun, Dongfei
    Lei, Ziqiang
    ACTA CHIMICA SINICA, 2021, 79 (02) : 200 - 207
  • [8] Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries
    Wang, Jinjin
    Wang, Jian-Gan
    Liu, Huanyan
    Wei, Chunguang
    Kang, Feiyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13727 - 13735
  • [9] Improving stability and reversibility of manganese dioxide cathode materials via nitrogen and sulfur doping for aqueous zinc ion batteries
    Chen, Tiantian
    Liu, Xuran
    Shen, Xixun
    Dai, Bingbing
    Xu, Qunjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 943
  • [10] Ion-exchange induced Ni doping of α-MnO2 cathode with structural modification for aqueous zinc ion batteries
    Liang, Xiaodong
    Liu, Xin
    Wang, Peixiong
    Guo, Zhongxian
    Chen, Xin
    Yao, Jia
    Li, Jingying
    Gan, Yi
    Lv, Lin
    Tao, Li
    Wang, Hanbin
    Wan, Houzhao
    Zhang, Jun
    Wang, Hao
    JOURNAL OF POWER SOURCES, 2025, 635