Germanium wafers for strained quantum wells with low disorder

被引:19
作者
Stehouwer, Lucas E. A. [1 ,2 ]
Tosato, Alberto [1 ,2 ]
Degli Esposti, Davide [1 ,2 ]
Costa, Davide [1 ,2 ]
Veldhorst, Menno [1 ,2 ]
Sammak, Amir [3 ,4 ]
Scappucci, Giordano [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] QuTech, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[4] Netherlands Org Appl Sci Res TNO, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
基金
欧盟地平线“2020”;
关键词
Field effect transistors - Germanium - Hole mobility - Semiconductor quantum wells - Silicon wafers - Solvents;
D O I
10.1063/5.0158262
中图分类号
O59 [应用物理学];
学科分类号
摘要
We grow strained Ge/SiGe heterostructures by reduced-pressure chemical vapor deposition on 100 mm Ge wafers. The use of Ge wafers as substrates for epitaxy enables high-quality Ge-rich SiGe strain-relaxed buffers with a threading dislocation density of (6 +/- 1) x 10(5) cm(-2), nearly an order of magnitude improvement compared to control strain-relaxed buffers on Si wafers. The associated reduction in short-range scattering allows for a drastic improvement of the disorder properties of the two-dimensional hole gas, measured in several Ge/SiGe heterostructure field-effect transistors. We measure an average low percolation density of (1:22 +/- 0:03) x 10(10) cm(-2) and an average maximum mobility of (3:4 +/- 0:1) x 10(6) cm(2)/Vs and quantum mobility of (8:4 +/- 0:5) x 10(4) cm(2)/Vs when the hole density in the quantum well is saturated to (1:65 +/- 0:02) x 10(11) cm(-2). We anticipate immediate application of these heterostructures for next-generation, higher-performance Ge spin-qubits, and their integration into larger quantum processors.
引用
收藏
页数:5
相关论文
共 36 条
  • [31] Hard superconducting gap in germanium
    Tosato, Alberto
    Levajac, Vukan
    Wang, Ji-Yin
    Boor, Casper J.
    Borsoi, Francesco
    Botifoll, Marc
    Borja, Carla N.
    Marti-Sanchez, Sara
    Arbiol, Jordi
    Sammak, Amir
    Veldhorst, Menno
    Scappucci, Giordano
    [J]. COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [32] Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET
    Tracy, L. A.
    Hwang, E. H.
    Eng, K.
    Ten Eyck, G. A.
    Nordberg, E. P.
    Childs, K.
    Carroll, M. S.
    Lilly, M. P.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2009, 79 (23):
  • [33] Phase flip code with semiconductor spin qubits
    van Riggelen, F.
    Lawrie, W. I. L.
    Russ, M.
    Hendrickx, N. W.
    Sammak, A.
    Rispler, M.
    Terhal, B. M.
    Scappucci, G.
    Veldhorst, M.
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [34] Probing resonating valence bonds on a programmable germanium quantum simulator
    Wang, Chien-An
    Deprez, Corentin
    Tidjani, Hanifa
    Lawrie, William I. L.
    Hendrickx, Nico W.
    Sammak, Amir
    Scappucci, Giordano
    Veldhorst, Menno
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [35] Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures
    Wuetz, B. Paquelet
    Bavdaz, P. L.
    Yeoh, L. A.
    Schouten, R.
    van der Does, H.
    Tiggelman, M.
    Sabbagh, D.
    Sammak, A.
    Almudever, C. G.
    Sebastiano, F.
    Clarke, J. S.
    Veldhorst, M.
    Scappucci, G.
    [J]. NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [36] Wuetz Paquelet, 2023, NAT COMMUN, V14, P1385, DOI DOI 10.1038/s41467-023-36951-w