Germanium wafers for strained quantum wells with low disorder

被引:19
作者
Stehouwer, Lucas E. A. [1 ,2 ]
Tosato, Alberto [1 ,2 ]
Degli Esposti, Davide [1 ,2 ]
Costa, Davide [1 ,2 ]
Veldhorst, Menno [1 ,2 ]
Sammak, Amir [3 ,4 ]
Scappucci, Giordano [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] QuTech, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[4] Netherlands Org Appl Sci Res TNO, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
基金
欧盟地平线“2020”;
关键词
Field effect transistors - Germanium - Hole mobility - Semiconductor quantum wells - Silicon wafers - Solvents;
D O I
10.1063/5.0158262
中图分类号
O59 [应用物理学];
学科分类号
摘要
We grow strained Ge/SiGe heterostructures by reduced-pressure chemical vapor deposition on 100 mm Ge wafers. The use of Ge wafers as substrates for epitaxy enables high-quality Ge-rich SiGe strain-relaxed buffers with a threading dislocation density of (6 +/- 1) x 10(5) cm(-2), nearly an order of magnitude improvement compared to control strain-relaxed buffers on Si wafers. The associated reduction in short-range scattering allows for a drastic improvement of the disorder properties of the two-dimensional hole gas, measured in several Ge/SiGe heterostructure field-effect transistors. We measure an average low percolation density of (1:22 +/- 0:03) x 10(10) cm(-2) and an average maximum mobility of (3:4 +/- 0:1) x 10(6) cm(2)/Vs and quantum mobility of (8:4 +/- 0:5) x 10(4) cm(2)/Vs when the hole density in the quantum well is saturated to (1:65 +/- 0:02) x 10(11) cm(-2). We anticipate immediate application of these heterostructures for next-generation, higher-performance Ge spin-qubits, and their integration into larger quantum processors.
引用
收藏
页数:5
相关论文
共 36 条
  • [1] Abadillo-Uriel JC, 2023, Arxiv, DOI arXiv:2212.03691
  • [2] Chemical vapour etching of Si, SiGe and Ge with HCl; applications to the formation of thin relaxed SiGe buffers and to the revelation of threading dislocations
    Bogumilowicz, Y
    Hartmann, JM
    Truche, R
    Campidelli, Y
    Rolland, G
    Billon, T
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (02) : 127 - 134
  • [3] Borsoi F, 2022, Arxiv, DOI arXiv:2209.06609
  • [4] Fully Tunable Hyperfine Interactions of Hole Spin Qubits in Si and Ge Quantum Dots
    Bosco, Stefano
    Loss, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (19)
  • [5] Hole Spin Qubits in Si FinFETs With Fully Tunable Spin-Orbit Coupling and Sweet Spots for Charge Noise
    Bosco, Stefano
    Hetenyi, Bence
    Loss, Daniel
    [J]. PRX QUANTUM, 2021, 2 (01):
  • [6] Spin-dependent Josephson current through double quantum dots and measurement of entangled electron states
    Choi, MS
    Bruder, C
    Loss, D
    [J]. PHYSICAL REVIEW B, 2000, 62 (20) : 13569 - 13572
  • [7] Effective masses in high-mobility 2D electron gas structures
    Coleridge, PT
    Hayne, M
    Zawadzki, P
    Sachrajda, AS
    [J]. SURFACE SCIENCE, 1996, 361 (1-3) : 560 - 563
  • [8] SMALL-ANGLE SCATTERING IN 2-DIMENSIONAL ELECTRON GASES
    COLERIDGE, PT
    [J]. PHYSICAL REVIEW B, 1991, 44 (08): : 3793 - 3801
  • [9] Nanoscale Mapping of the 3D Strain Tensor in a Germanium Quantum Well Hosting a Functional Spin Qubit Device
    Corley-Wiciak, Cedric
    Richter, Carsten
    Zoellner, Marvin H.
    Zaitsev, Ignatii
    Manganelli, Costanza L.
    Zatterin, Edoardo
    Schulli, Tobias U.
    Corley-Wiciak, Agnieszka A.
    Katzer, Jens
    Reichmann, Felix
    Klesse, Wolfgang M.
    Hendrickx, Nico W.
    Sammak, Amir
    Veldhorst, Menno
    Scappucci, Giordano
    Virgilio, Michele
    Capellini, Giovanni
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (02) : 3119 - 3130
  • [10] A single-hole spin qubit
    Hendrickx, N. W.
    Lawrie, W. I. L.
    Petit, L.
    Sammak, A.
    Scappucci, G.
    Veldhorst, M.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)