Data-Driven Battery Characterization and Prognosis: Recent Progress, Challenges, and Prospects

被引:18
|
作者
Ji, Shanling [1 ]
Zhu, Jianxiong [1 ,2 ]
Yang, Yaxin [1 ]
dos Reis, Goncalo [3 ]
Zhang, Zhisheng [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
[3] Univ Edinburgh, Sch Math, JCMB, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
battery characterization; battery prognosis; data-driven methods; explainable artificial intelligence; physics-informed learning; LITHIUM-ION BATTERY; INFORMED NEURAL-NETWORK; VOLTAGE FAULT-DIAGNOSIS; CHARGE ESTIMATION; LIFETIME PREDICTION; STATE; SYSTEMS; ENTROPY; MODEL; MANAGEMENT;
D O I
10.1002/smtd.202301021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Battery characterization and prognosis are essential for analyzing underlying electrochemical mechanisms and ensuring safe operation, especially with the assistance of superior data-driven artificial intelligence systems. This review provides a unique perspective on recent progress in data-driven battery characterization and prognosis methods. First, recent informative image characterization and impedance spectrum as well as high-throughput screening approaches on revealing battery electrochemical mechanisms at multiple scales are summarized. Thereafter, battery prognosis tasks and strategies are described, with the comparison of various physics-informed modeling strategies. Considering unlocking mechanisms from tremendous battery data, the dominant role of physics-informed interpretable learning in accelerating energy device development is presented. Finally, challenges and prospects on data-driven characterization and prognosis are discussed toward accelerating energy device development with much-enhanced electrochemical transparency and generalization. This review is hoped to supply new ideas and inspirations to the next-generation battery development. The data-driven characterization and prognosis methods for batteries, including multiscale informative characterization and physics-informed machine learning developed in recent years, are reviewed in this article. This review proposes promising research directions of multimodal fusion and unified modeling for accelerating next-generation battery development.image
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A Critical Review of Data-Driven Transient Stability Assessment of Power Systems: Principles, Prospects and Challenges
    Zhang, Shitu
    Zhu, Zhixun
    Li, Yang
    ENERGIES, 2021, 14 (21)
  • [32] A comprehensive data network for data-driven study of battery materials
    Xu, Yibin
    Wu, Yen-Ju
    Li, Huiping
    Fang, Lei
    Hayashi, Shigenobu
    Oishi, Ayako
    Shimizu, Natsuko
    Caputo, Riccarda
    Villars, Pierre
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2024, 25 (01)
  • [33] A novel data-driven method for mining battery open-circuit voltage characterization
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Li, Hailong
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2022, 1 (01):
  • [34] Recent advancements in data-driven methodologies for the fault diagnosis and prognosis of marine systems: A systematic review
    Velasco-Gallego, Christian
    De Maya, Beatriz Navas
    Molina, Clara Matutano
    Lazakis, Iraklis
    Mateo, Nieves Cubo
    OCEAN ENGINEERING, 2023, 284
  • [35] A novel approach for prognosis of lithium-ion battery based on geometrical features and data-driven model
    Xu, Guoning
    Gao, Yang
    Li, Yongxiang
    Jia, Zhongzhen
    Du, Xiaowei
    Yang, Yanchu
    Wang, Sheng
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [36] Ethical Challenges in Data-Driven Dialogue Systems
    Henderson, Peter
    Sinha, Koustuv
    Angelard-Gontier, Nicolas
    Ke, Nan Rosemary
    Fried, Genevieve
    Lowe, Ryan
    Pineau, Joelle
    PROCEEDINGS OF THE 2018 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY (AIES'18), 2018, : 123 - 129
  • [37] CODATA and global challenges in data-driven science
    Rybkina, A.
    Hodson, S.
    Gvishiani, A.
    Kabat, P.
    Krasnoperov, R.
    Samokhina, O.
    Firsova, E.
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2018, 18 (04):
  • [38] Data-driven Roadmapping Turning Challenges into Opportunities
    Pora, Ummaraporn
    Thawesaengskulthai, Natcha
    Gerdsri, Nathasit
    Triukose, Sipat
    2018 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET '18): MANAGING TECHNOLOGICAL ENTREPRENEURSHIP: THE ENGINE FOR ECONOMIC GROWTH, 2018,
  • [39] Data-Driven Usability Refactoring: Tools and Challenges
    Garrido, Alejandra
    Firmenich, Sergio
    Grigera, Julian
    Rossi, Gustavo
    6TH INTERNATIONAL WORKSHOP ON SOFTWARE MINING (SOFTWAREMINING), 2017, : 52 - 55
  • [40] Recent advances in data-driven dynamics and control
    Ma Z.-S.
    Li X.
    He M.-X.
    Jia S.
    Yin Q.
    Ding Q.
    International Journal of Dynamics and Control, 2020, 8 (04) : 1200 - 1221