A deep learning-based semiautomated workflow for triaging follow-up MR scans in treated nasopharyngeal carcinoma

被引:0
|
作者
Huang, Ying-Ying [1 ,2 ]
Deng, Yi-Shu [1 ,3 ,4 ]
Liu, Yang [1 ,5 ]
Qiang, Meng-Yun [6 ]
Qiu, Wen-Ze [7 ]
Xia, Wei-Xiong [1 ,8 ]
Jing, Bing-Zhong [1 ,3 ]
Feng, Chen-Yang [1 ,3 ]
Chen, Hao-Hua [1 ,3 ]
Cao, Xun [1 ,9 ]
Zhou, Jia-Yu [1 ,8 ]
Huang, Hao-Yang [1 ,8 ]
Zhan, Ze-Jiang [1 ,8 ]
Deng, Ying [1 ,8 ]
Tang, Lin-Quan [1 ,8 ]
Mai, Hai-Qiang [1 ,8 ]
Sun, Ying [1 ,5 ]
Xie, Chuan-Miao [1 ,2 ]
Guo, Xiang [1 ,8 ]
Ke, Liang-Ru [1 ,2 ]
Lv, Xing [1 ,8 ]
Li, Chao-Feng [1 ,3 ]
机构
[1] Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China, Guangzhou 510060, Peoples R China
[2] Sun Yat Sen Univ, Dept Radiol, Canc Ctr, Guangzhou 510060, Peoples R China
[3] Sun Yat Sen Univ, Canc Ctr, Dept Informat, Guangzhou 510060, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
[5] Sun Yat Sen Univ, Dept Radiat Oncol, Canc Ctr, Guangzhou 510060, Peoples R China
[6] Univ Chinese Acad Sci, Dept Radiat Oncol, Canc Hosp, Hangzhou 310005, Peoples R China
[7] Guangzhou Med Univ, Dept Radiat Oncol, Affiliated Canc Hosp, Guangzhou 510095, Peoples R China
[8] Sun Yat Sen Univ, Dept Nasopharyngeal Carcinoma, Canc Ctr, Guangzhou 510060, Peoples R China
[9] Sun Yat Sen Univ, Dept Crit Care Med, Canc Ctr, Guangzhou 510060, Peoples R China
基金
中国国家自然科学基金;
关键词
CANCER; HEAD;
D O I
10.1016/j.isci.2023.108347
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow (RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma from three centers (ChiCTR.org.cn, Chi-CTR2200056595). A boost of diagnostic performance and reduced workload was observed in RAINMAN compared with the original manual interpretations (internal vs. external: sensitivity, 2.5% [p = 0.500] vs. 3.2% [p = 0.031]; specificity, 2.9% [p < 0.001] vs. 0.3% [p = 0.302]; workload reduction, 79.3% vs. 76.2%). The workflow also yielded a triaging performance of 83.6%, with increases of 1.5% in sensitivity (p = 1.000) and 0.6%-1.3% (all p < 0.05) in specificity compared to three radiologists in the reader study. The semiautomated workflow shows its unique superiority in reducing radiologist's workload by eliminating negative scans while retaining the diagnostic performance of radiologists.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Deep learning-based recurrence detector on magnetic resonance scans in nasopharyngeal carcinoma: A multicenter study
    Deng, Yishu
    Huang, Yingying
    Jing, Bingzhong
    Wu, Haijun
    Qiu, Wenze
    Chen, Haohua
    Li, Bin
    Guo, Xiang
    Xie, Chuanmiao
    Sun, Ying
    Dai, Xianhua
    Lv, Xing
    Li, Chaofeng
    Ke, Liangru
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 168
  • [2] Deep Learning for Automated Triaging of Stable Chest Radiographs in a Follow-up Setting
    Yun, Jihye
    Ahn, Yura
    Cho, Kyungjin
    Oh, Sang Young
    Lee, Sang Min
    Kim, Namkug
    Seo, Joon Beom
    RADIOLOGY, 2023, 309 (01)
  • [3] A Reinforcement Learning-Based Follow-up Framework
    Astudillo, Javiera
    Protopapas, Pavlos
    Pichara, Karim
    Becker, Ignacio
    ASTRONOMICAL JOURNAL, 2023, 165 (03):
  • [4] Clinical scenario of EBV DNA follow-up in patients of treated localized nasopharyngeal carcinoma
    Hsu, Cheng-Lung
    Chan, Sheng-Chieh
    Chang, Kai-Ping
    Lin, Tung-Liang
    Lin, Chien-Yu
    Hsieh, Chia-Hsun
    Huang, Shiang-Fu
    Tsang, Ngan-Ming
    Lee, Li-Yu
    Ng, Shu-Hang
    Wang, Hung-Ming
    ORAL ONCOLOGY, 2013, 49 (06) : 620 - 625
  • [5] Deep learning-based deformable image registration with bilateral pyramid to align pre-operative and follow-up magnetic resonance imaging (MRI) scans
    Zhang, Jingjing
    Xie, Xin
    Cheng, Xuebin
    Li, Teng
    Zhong, Jinqin
    Hu, Xiaokun
    Sun, Lu
    Yan, Hui
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (07) : 4779 - 4791
  • [6] Deep Learning-Based Automatic Assessment of Radiation Dermatitis in Patients With Nasopharyngeal Carcinoma
    Ni, Ruiyan
    Zhou, Ta
    Ren, Ge
    Zhang, Yuanpeng
    Yang, Dongrong
    Tam, Victor C. W.
    Leung, Wan Shun
    Ge, Hong
    Lee, Shara W. Y.
    Cai, Jing
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 113 (03): : 685 - 694
  • [7] Follow-up strategy based on event dynamics for stage II nasopharyngeal carcinoma
    Pan, Xin-Bin
    Qu, Song
    Li, Ling
    Chen, Long
    Liang, Shi-Xiong
    Zhu, Xiao-Dong
    INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2020, 96 (11) : 1486 - 1491
  • [8] Frequency of skeletal metastases in nasopharyngeal carcinoma after initiation of therapy: should bone scans be used for follow-up?
    Caglar, M
    Ceylan, E
    Ozyar, E
    NUCLEAR MEDICINE COMMUNICATIONS, 2003, 24 (12) : 1231 - 1236
  • [9] Small hepatocellular carcinoma treated with percutaneous RF ablation: MR imaging follow-up
    Sironi, S
    Livraghi, T
    Meloni, F
    De Cobelli, F
    Ferrero, CG
    Del Maschio, A
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1999, 173 (05) : 1225 - 1229
  • [10] Tumor regression patterns by follow-up duration in patients with nasopharyngeal carcinoma treated with concurrent chemoradiotherapy
    Kong, Moonkyoo
    Hong, Seong Eon
    JOURNAL OF RADIATION RESEARCH, 2017, 58 (02) : 232 - 237