INFRDET: IoT network flow regulariser-based detection and classification of IoT botnet

被引:1
|
作者
Garg, Umang [1 ,2 ]
Kumar, Santosh [1 ]
Kumar, Manoj [1 ]
机构
[1] Graph Era Deemed Univ, Dept Comp Sci & Engn, Dehra Dun, Uttarakhand, India
[2] Graph Era Hill Univ, Dehra Dun, Uttarakhand, India
关键词
IoT botnet; deep learning; CNN; DDoS; VGG; INTERNET; THINGS;
D O I
10.1504/IJGUC.2023.135344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet of Things (IoT) botnet is one of the attacks which affect the working of authentic IoT devices. In this paper, a novel light-weighted intelligent system has been devised by using traffic analysis and regulators to detect botnet-infected devices in the IoT network. The system operates on a low-powered Raspberry Pi device with network packet counts. Besides, an IoT Network Flow Regulariser (INFR) algorithm is proposed and embedded for transforming network flows to the uniform length traffic frame. The experimental results show the better performance of the proposed system with the INFR algorithm in comparison to the existing work. In addition, to classify the benign and malicious traffic, a novel method is used to visualise the network activities through graphical heatmaps. These heatmaps are further investigated using a hybrid Convolution Neural Network (CNN) model without and with the INFR algorithm and therefore receive remarkable differences in terms of better results.
引用
收藏
页码:606 / 616
页数:12
相关论文
共 50 条
  • [1] Network Flow based IoT Botnet Attack Detection using Deep Learning
    Sriram, S.
    Vinayakumar, R.
    Alazab, Mamoun
    Soman, K. P.
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2020, : 189 - 194
  • [2] IoT Botnet Attacks Detection and Classification Based on Ensemble Learning
    Cao, Yongzhong
    Wang, Zhihui
    Ding, Hongwei
    Zhang, Jiale
    Li, Bin
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2023, 2024, 1998 : 45 - 55
  • [3] Detection of IoT Botnet Based on Deep Learning
    Liu, Junyi
    Liu, Shiyue
    Zhang, Sihua
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8381 - 8385
  • [4] A Multi-Class Neural Network Model for Rapid Detection of IoT Botnet Attacks
    Alzahrani, Haifaa
    Abulkhair, Maysoon
    Alkayal, Entisar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (07) : 688 - 696
  • [5] Botnet-based IoT network traffic analysis using deep learning
    Singh, N. Joychandra
    Hoque, Nazrul
    Singh, Kh. Robindro
    Bhattacharyya, Dhruba K.
    SECURITY AND PRIVACY, 2024, 7 (02)
  • [6] A comparative analysis of using ensemble trees for botnet detection and classification in IoT
    Saied, Mohamed
    Guirguis, Shawkat
    Madbouly, Magda
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] IoT Botnet Attack Detection Model Based on DBO-Catboost
    Yang, Changjin
    Guan, Weili
    Fang, Zhijie
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [8] IoT Botnet Detection framework from Network Behavior based on Extreme Learning Machine
    Hasan, Nasimul
    Chen, Zhenxiang
    Zhao, Chuan
    Zhu, Yuhui
    Liu, Cong
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [9] A novel graph-based approach for IoT botnet detection
    Huy-Trung Nguyen
    Quoc-Dung Ngo
    Van-Hoang Le
    International Journal of Information Security, 2020, 19 : 567 - 577
  • [10] Deep Learning-Based Intrusion Detection System for Detecting IoT Botnet Attacks: A Review
    Al-Shurbaji, Tamara
    Anbar, Mohammed
    Manickam, Selvakumar
    Hasbullah, Iznan H.
    Alfriehat, Nadia
    Alabsi, Basim Ahmad
    Alzighaibi, Ahmad Reda
    Hashim, Hasan
    IEEE ACCESS, 2025, 13 : 11792 - 11822